An Almost Optimal Algorithm for Computing Nonnegative Rank
Here, we give an algorithm for deciding if the nonnegative rank of a matrix M of dimension m \times n$ is at most r which runs in time (nm)[superscript O(r2)]. This is the first exact algorithm that runs in time singly exponential in r. This algorithm (and earlier algorithms) are built on methods f...
मुख्य लेखक: | Moitra, Ankur |
---|---|
अन्य लेखक: | Massachusetts Institute of Technology. Department of Mathematics |
स्वरूप: | लेख |
भाषा: | en_US |
प्रकाशित: |
Society for Industrial and Applied Mathematics
2017
|
ऑनलाइन पहुंच: | http://hdl.handle.net/1721.1/108665 https://orcid.org/0000-0001-7047-0495 |
समान संसाधन
-
Lower bounds on nonnegative rank via nonnegative nuclear norms
द्वारा: Fawzi, Hamza, और अन्य
प्रकाशित: (2016) -
Self-scaled bounds for atomic cone ranks: applications to nonnegative rank and cp-rank
द्वारा: Fawzi, Hamza, और अन्य
प्रकाशित: (2016) -
Almost-optimal gossip-based aggregate computation
द्वारा: Chen, Jen-Yeu, और अन्य
प्रकाशित: (2013) -
Vertex sparsification and universal rounding algorithms
द्वारा: Moitra, Ankur
प्रकाशित: (2011) -
Approximation Algorithms for Multicommodity-Type Problems with Guarantees Independent of the Graph Size
द्वारा: Moitra, Ankur
प्रकाशित: (2010)