Quantitative comparison of electron temperature fluctuations to nonlinear gyrokinetic simulations in C-Mod Ohmic L-mode discharges

Long wavelength turbulent electron temperature fluctuations (k[subscript lower case y]ρ[subscript lower case s] < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cy...

Full description

Bibliographic Details
Main Authors: Holland, C., Howard, N. T., Sung, Choongki, White, Anne E., Mikkelsen, David, Theiler, Christian, Greenwald, Martin J., Churchill, Randy
Other Authors: Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Format: Article
Language:en_US
Published: American Institute of Physics (AIP) 2017
Online Access:http://hdl.handle.net/1721.1/108782
https://orcid.org/0000-0003-2951-9749
https://orcid.org/0000-0002-4438-729X
Description
Summary:Long wavelength turbulent electron temperature fluctuations (k[subscript lower case y]ρ[subscript lower case s] < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local, electrostatic ion-scale simulations (k[subscript lower case y]ρ[subscript lower case s] ≲ 1.7) performed at r/a ∼ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the “Transport Shortfall” [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].