Analysis of Mo sidewall ohmic contacts to InGaAs fins

Thesis: S.M. in Electrical Engineering, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.

Bibliographic Details
Main Author: Choi, Dongsung
Other Authors: Jesús A. del Alamo.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2017
Subjects:
Online Access:http://hdl.handle.net/1721.1/108987
_version_ 1826202430562369536
author Choi, Dongsung
author2 Jesús A. del Alamo.
author_facet Jesús A. del Alamo.
Choi, Dongsung
author_sort Choi, Dongsung
collection MIT
description Thesis: S.M. in Electrical Engineering, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.
first_indexed 2024-09-23T12:07:21Z
format Thesis
id mit-1721.1/108987
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T12:07:21Z
publishDate 2017
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/1089872019-04-10T15:07:00Z Analysis of Mo sidewall ohmic contacts to InGaAs fins Choi, Dongsung Jesús A. del Alamo. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. Electrical Engineering and Computer Science. Thesis: S.M. in Electrical Engineering, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017. Cataloged from PDF version of thesis. Includes bibliographical references (pages 79-80). As transistor size is scaled down, the performance is degraded and many problems, so called shortchannel effects, arise. To address this problem, a vertical transistor structure such as vertical nanowire is suggested. In a vertical nanowire field-effect-transistor, the Ohmic contact at the top of the nanowire not only covers the top surface, but also wraps around the sidewall. Because the sidewall is considered to be different from the top surface, it is necessary to study the sidewall Ohmic contact properties such as the contact resistivity. In this thesis, to explore sidewall contact resistivity, a theoretical model for sidewall contacts is developed. For the suggested test structure, the fin sidewall contact (FSWC) structure, the sidewall contact is modeled with a transmission line model (TLM), and by using TLM, the sidewall contact resistance is derived. Also, an extraction method of the sidewall contact resistivity from the total resistance measured in FSWC structure is developed. Next, process steps to fabricate FSWC structure are developed. FSWC structure is made for Mo/n+-InGaAs contacts. The key step is that the fin etch mask on top of InGaAs is not removed and the metal (Mo) is sputtered so that InGaAs is contacted by the Mo only through the sidewall. Therefore, only a sidewall contact is made without a top contact. Also, to investigate the way to improve the sidewall contact resistivity, the effect of digital etch and annealing on the sidewall contact resistivity is explored. With the measured total resistance in FSWC structure and the extraction method for sidewall contact resistivity, sidewall contact resistivity for each split of digital etch and annealing are extracted. As a summary of the effect of digital etch and annealing, two cycles of digital etch or sequential annealing up to 400 °C improves the sidewall contact resistivity with little sacrifice in semiconductor resistivity. The best result of sidewall contact resistivity is 3.7±0.01[Omega] x [mu]m2 at 400 °C annealing, which is about 1.9 times improvement over the non-annealed value, 6.9±0.05 [Omega] x [mu]m2 but still about 5.4 times larger than the reported top contact resistivity of 0.69±0.3 [Omega] x [mu]m2. by Dongsung Choi S.M. in Electrical Engineering 2017-05-11T19:59:18Z 2017-05-11T19:59:18Z 2017 2017 Thesis http://hdl.handle.net/1721.1/108987 986497820 eng MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582 80 pages application/pdf Massachusetts Institute of Technology
spellingShingle Electrical Engineering and Computer Science.
Choi, Dongsung
Analysis of Mo sidewall ohmic contacts to InGaAs fins
title Analysis of Mo sidewall ohmic contacts to InGaAs fins
title_full Analysis of Mo sidewall ohmic contacts to InGaAs fins
title_fullStr Analysis of Mo sidewall ohmic contacts to InGaAs fins
title_full_unstemmed Analysis of Mo sidewall ohmic contacts to InGaAs fins
title_short Analysis of Mo sidewall ohmic contacts to InGaAs fins
title_sort analysis of mo sidewall ohmic contacts to ingaas fins
topic Electrical Engineering and Computer Science.
url http://hdl.handle.net/1721.1/108987
work_keys_str_mv AT choidongsung analysisofmosidewallohmiccontactstoingaasfins