The flux qubit revisited to enhance coherence and reproducibility
The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). Here, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad-frequency tunability, strong anharmonicity, hi...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Nature Publishing Group
2017
|
Online Access: | http://hdl.handle.net/1721.1/109140 https://orcid.org/0000-0002-4674-2806 https://orcid.org/0000-0002-7069-1025 https://orcid.org/0000-0001-5430-9837 https://orcid.org/0000-0002-4436-6886 |
Summary: | The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). Here, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad-frequency tunability, strong anharmonicity, high reproducibility and relaxation times in excess of 40 μs at its flux-insensitive point. Qubit relaxation times T₁ across 22 qubits are consistently matched with a single model involving resonator loss, ohmic charge noise and 1/f-flux noise, a noise source previously considered primarily in the context of dephasing. We furthermore demonstrate that qubit dephasing at the flux-insensitive point is dominated by residual thermal-photons in the readout resonator. The resulting photon shot noise is mitigated using a dynamical decoupling protocol, resulting in T₂≈85 μs, approximately the 2T₁ limit. In addition to realizing an improved flux qubit, our results uniquely identify photon shot noise as limiting T₂ in contemporary qubits based on transverse qubit–resonator interaction. |
---|