Laser-induced versus shock wave induced transformation of highly ordered pyrolytic graphite
We demonstrate that in-plane 2D propagation and focusing of a laser-induced shock wave result in enhanced nano-crystallization of highly ordered pyrolytic graphite. Throughout the 2D shock focusing technique, which enables to clearly distinguish between the laser-induced and the shock-induced transf...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Institute of Physics (AIP)
2017
|
Online Access: | http://hdl.handle.net/1721.1/109265 https://orcid.org/0000-0003-4473-1983 https://orcid.org/0000-0001-7804-5418 |
Summary: | We demonstrate that in-plane 2D propagation and focusing of a laser-induced shock wave result in enhanced nano-crystallization of highly ordered pyrolytic graphite. Throughout the 2D shock focusing technique, which enables to clearly distinguish between the laser-induced and the shock-induced transformation/transition, our findings establish the role of the shock wave during the transformation/transition process. This configuration could open the way to an alternative path for laser shock fabrication of graphitic compounds and would give access to real time investigation of shock waves mediated phase transitions. |
---|