Output-feedback control of nonlinear systems using control contraction metrics and convex optimization
Control contraction metrics (CCMs) are a new approach to nonlinear control design based on contraction theory. The resulting design problems are expressed as pointwise linear matrix inequalities and are and well-suited to solution via convex optimization. In this paper, we extend the theory on CCMs...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers
2017
|
Online Access: | http://hdl.handle.net/1721.1/109342 https://orcid.org/0000-0002-7161-7812 |
Summary: | Control contraction metrics (CCMs) are a new approach to nonlinear control design based on contraction theory. The resulting design problems are expressed as pointwise linear matrix inequalities and are and well-suited to solution via convex optimization. In this paper, we extend the theory on CCMs by showing that a pair of “dual” observer and controller problems can be solved using pointwise linear matrix inequalities, and that when a solution exists a separation principle holds. That is, a stabilizing output-feedback controller can be found. The procedure is demonstrated using a benchmark problem of nonlinear control: the Moore-Greitzer jet engine compressor model. |
---|