High-sensitivity spin-based electrometry with an ensemble of nitrogen-vacancy centers in diamond
We demonstrate a spin-based, all-dielectric electrometer based on an ensemble of nitrogen-vacancy (NV[superscript −]) defects in diamond. An applied electric field causes energy-level shifts symmetrically away from the NV[superscript −]'s degenerate triplet states via the Stark effect; this sym...
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
American Physical Society
2017
|
Online Access: | http://hdl.handle.net/1721.1/109432 https://orcid.org/0000-0001-7217-7137 https://orcid.org/0000-0002-7405-4613 |
Summary: | We demonstrate a spin-based, all-dielectric electrometer based on an ensemble of nitrogen-vacancy (NV[superscript −]) defects in diamond. An applied electric field causes energy-level shifts symmetrically away from the NV[superscript −]'s degenerate triplet states via the Stark effect; this symmetry provides immunity to temperature fluctuations allowing for shot-noise-limited detection. Using an ensemble of NV[superscript −]s, we demonstrate shot-noise-limited sensitivities approaching 1 (V/cm)/√Hz under ambient conditions, at low frequencies (<10 Hz), and over a large dynamic range (20 dB). A theoretical model for the ensemble of NV[superscript −]s fits well with measurements of the ground-state electric susceptibility parameter 〈k[subscript ⊥]〉. Implications of spin-based, dielectric sensors for micron-scale electric-field sensing are discussed. |
---|