Tidally Driven Processes Leading to Near-Field Turbulence in a Channel at the Crest of the Mendocino Escarpment*

In situ observations of tidally driven turbulence were obtained in a small channel that transects the crest of the Mendocino Ridge, a site of mixed (diurnal and semidiurnal) tides. Diurnal tides are subinertial at this latitude, and once per day a trapped tide leads to large flows through the channe...

Full description

Bibliographic Details
Main Authors: MacKinnon, J. A., Pinkel, R., Waterhouse, A. F., Nash, J., Musgrave, Ruth Claire
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Language:en_US
Published: American Meteorological Society 2017
Online Access:http://hdl.handle.net/1721.1/109510
Description
Summary:In situ observations of tidally driven turbulence were obtained in a small channel that transects the crest of the Mendocino Ridge, a site of mixed (diurnal and semidiurnal) tides. Diurnal tides are subinertial at this latitude, and once per day a trapped tide leads to large flows through the channel giving rise to tidal excursion lengths comparable to the width of the ridge crest. During these times, energetic turbulence is observed in the channel, with overturns spanning almost half of the full water depth. A high-resolution, nonhydrostatic, 2.5-dimensional simulation is used to interpret the observations in terms of the advection of a breaking tidal lee wave that extends from the ridge crest to the surface and the subsequent development of a hydraulic jump on the flanks of the ridge. Modeled dissipation rates show that turbulence is strongest on the flanks of the ridge and that local dissipation accounts for 28% of the energy converted from the barotropic tide into baroclinic motion.