The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading

Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the curr...

Full description

Bibliographic Details
Main Authors: Boyce, B. L, Kramer, S. L B, Bosiljevac, T. R, Corona, E., Moore, J. A, Elkhodary, K., Simha, C. H M, Williams, B. W, Cerrone, A. R, Nonn, A., Hochhalter, J. D, Bomarito, G. F, Warner, J. E, Carter, B. J, Warner, D. H, Ingraffea, A. R, Zhang, T., Fang, X., Lua, J., Chiaruttini, V., Mazière, M., Feld-Payet, S., Yastrebov, V. A, Besson, J., Chaboche, J.-L., Lian, J., Di, Y., Wu, B., Novokshanov, D., Vajragupta, N., Kucharczyk, P., Brinnel, V., Döbereiner, B., Münstermann, S., Neilsen, M. K, Dion, K., Karlson, K. N, Foulk, J. W, Brown, A. A, Veilleux, M. G, Bignell, J. L, Sanborn, S. E, Jones, C. A, Mattie, P. D, Chi, S.-W., Lin, S.-P., Mahdavi, A., Predan, J., Zadravec, J., Gross, A. J, Ravi-Chandar, K., Xue, L., Wierzbicki, Tomasz, Pack, Keun Hwan
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Language:English
Published: Springer-Verlag 2017
Online Access:http://hdl.handle.net/1721.1/109572
https://orcid.org/0000-0001-9390-9691
https://orcid.org/0000-0003-3075-9598
_version_ 1826202846179098624
author Boyce, B. L
Kramer, S. L B
Bosiljevac, T. R
Corona, E.
Moore, J. A
Elkhodary, K.
Simha, C. H M
Williams, B. W
Cerrone, A. R
Nonn, A.
Hochhalter, J. D
Bomarito, G. F
Warner, J. E
Carter, B. J
Warner, D. H
Ingraffea, A. R
Zhang, T.
Fang, X.
Lua, J.
Chiaruttini, V.
Mazière, M.
Feld-Payet, S.
Yastrebov, V. A
Besson, J.
Chaboche, J.-L.
Lian, J.
Di, Y.
Wu, B.
Novokshanov, D.
Vajragupta, N.
Kucharczyk, P.
Brinnel, V.
Döbereiner, B.
Münstermann, S.
Neilsen, M. K
Dion, K.
Karlson, K. N
Foulk, J. W
Brown, A. A
Veilleux, M. G
Bignell, J. L
Sanborn, S. E
Jones, C. A
Mattie, P. D
Chi, S.-W.
Lin, S.-P.
Mahdavi, A.
Predan, J.
Zadravec, J.
Gross, A. J
Ravi-Chandar, K.
Xue, L.
Wierzbicki, Tomasz
Pack, Keun Hwan
author2 Massachusetts Institute of Technology. Department of Mechanical Engineering
author_facet Massachusetts Institute of Technology. Department of Mechanical Engineering
Boyce, B. L
Kramer, S. L B
Bosiljevac, T. R
Corona, E.
Moore, J. A
Elkhodary, K.
Simha, C. H M
Williams, B. W
Cerrone, A. R
Nonn, A.
Hochhalter, J. D
Bomarito, G. F
Warner, J. E
Carter, B. J
Warner, D. H
Ingraffea, A. R
Zhang, T.
Fang, X.
Lua, J.
Chiaruttini, V.
Mazière, M.
Feld-Payet, S.
Yastrebov, V. A
Besson, J.
Chaboche, J.-L.
Lian, J.
Di, Y.
Wu, B.
Novokshanov, D.
Vajragupta, N.
Kucharczyk, P.
Brinnel, V.
Döbereiner, B.
Münstermann, S.
Neilsen, M. K
Dion, K.
Karlson, K. N
Foulk, J. W
Brown, A. A
Veilleux, M. G
Bignell, J. L
Sanborn, S. E
Jones, C. A
Mattie, P. D
Chi, S.-W.
Lin, S.-P.
Mahdavi, A.
Predan, J.
Zadravec, J.
Gross, A. J
Ravi-Chandar, K.
Xue, L.
Wierzbicki, Tomasz
Pack, Keun Hwan
author_sort Boyce, B. L
collection MIT
description Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Rather than evaluate the predictions of a single simulation approach, the Sandia Fracture Challenge relies on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in ∼∼ 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. Additional shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the ‘state-of-the-art’ in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods.
first_indexed 2024-09-23T12:21:49Z
format Article
id mit-1721.1/109572
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T12:21:49Z
publishDate 2017
publisher Springer-Verlag
record_format dspace
spelling mit-1721.1/1095722022-09-28T07:52:37Z The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading Boyce, B. L Kramer, S. L B Bosiljevac, T. R Corona, E. Moore, J. A Elkhodary, K. Simha, C. H M Williams, B. W Cerrone, A. R Nonn, A. Hochhalter, J. D Bomarito, G. F Warner, J. E Carter, B. J Warner, D. H Ingraffea, A. R Zhang, T. Fang, X. Lua, J. Chiaruttini, V. Mazière, M. Feld-Payet, S. Yastrebov, V. A Besson, J. Chaboche, J.-L. Lian, J. Di, Y. Wu, B. Novokshanov, D. Vajragupta, N. Kucharczyk, P. Brinnel, V. Döbereiner, B. Münstermann, S. Neilsen, M. K Dion, K. Karlson, K. N Foulk, J. W Brown, A. A Veilleux, M. G Bignell, J. L Sanborn, S. E Jones, C. A Mattie, P. D Chi, S.-W. Lin, S.-P. Mahdavi, A. Predan, J. Zadravec, J. Gross, A. J Ravi-Chandar, K. Xue, L. Wierzbicki, Tomasz Pack, Keun Hwan Massachusetts Institute of Technology. Department of Mechanical Engineering Wierzbicki, Tomasz Pack, Keun Hwan Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Rather than evaluate the predictions of a single simulation approach, the Sandia Fracture Challenge relies on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in ∼∼ 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. Additional shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the ‘state-of-the-art’ in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods. National Science Foundation (U.S.) 2017-06-02T21:42:20Z 2017-06-02T21:42:20Z 2016-03 2015-11 2016-05-23T09:35:54Z Article http://purl.org/eprint/type/JournalArticle 0376-9429 1573-2673 http://hdl.handle.net/1721.1/109572 Boyce, B. L. et al. “The Second Sandia Fracture Challenge: Predictions of Ductile Failure under Quasi-Static and Moderate-Rate Dynamic Loading.” International Journal of Fracture 198.1–2 (2016): 5–100. https://orcid.org/0000-0001-9390-9691 https://orcid.org/0000-0003-3075-9598 en http://dx.doi.org/10.1007/s10704-016-0089-7 International Journal of Fracture Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/ The Author(s) application/pdf Springer-Verlag Springer Netherlands
spellingShingle Boyce, B. L
Kramer, S. L B
Bosiljevac, T. R
Corona, E.
Moore, J. A
Elkhodary, K.
Simha, C. H M
Williams, B. W
Cerrone, A. R
Nonn, A.
Hochhalter, J. D
Bomarito, G. F
Warner, J. E
Carter, B. J
Warner, D. H
Ingraffea, A. R
Zhang, T.
Fang, X.
Lua, J.
Chiaruttini, V.
Mazière, M.
Feld-Payet, S.
Yastrebov, V. A
Besson, J.
Chaboche, J.-L.
Lian, J.
Di, Y.
Wu, B.
Novokshanov, D.
Vajragupta, N.
Kucharczyk, P.
Brinnel, V.
Döbereiner, B.
Münstermann, S.
Neilsen, M. K
Dion, K.
Karlson, K. N
Foulk, J. W
Brown, A. A
Veilleux, M. G
Bignell, J. L
Sanborn, S. E
Jones, C. A
Mattie, P. D
Chi, S.-W.
Lin, S.-P.
Mahdavi, A.
Predan, J.
Zadravec, J.
Gross, A. J
Ravi-Chandar, K.
Xue, L.
Wierzbicki, Tomasz
Pack, Keun Hwan
The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading
title The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading
title_full The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading
title_fullStr The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading
title_full_unstemmed The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading
title_short The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading
title_sort second sandia fracture challenge predictions of ductile failure under quasi static and moderate rate dynamic loading
url http://hdl.handle.net/1721.1/109572
https://orcid.org/0000-0001-9390-9691
https://orcid.org/0000-0003-3075-9598
work_keys_str_mv AT boycebl thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT kramerslb thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT bosiljevactr thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT coronae thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT mooreja thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT elkhodaryk thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT simhachm thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT williamsbw thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT cerronear thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT nonna thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT hochhalterjd thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT bomaritogf thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT warnerje thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT carterbj thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT warnerdh thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT ingraffeaar thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT zhangt thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT fangx thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT luaj thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT chiaruttiniv thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT mazierem thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT feldpayets thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT yastrebovva thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT bessonj thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT chabochejl thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT lianj thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT diy thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT wub thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT novokshanovd thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT vajraguptan thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT kucharczykp thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT brinnelv thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT dobereinerb thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT munstermanns thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT neilsenmk thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT dionk thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT karlsonkn thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT foulkjw thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT brownaa thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT veilleuxmg thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT bignelljl thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT sanbornse thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT jonesca thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT mattiepd thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT chisw thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT linsp thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT mahdavia thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT predanj thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT zadravecj thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT grossaj thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT ravichandark thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT xuel thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT wierzbickitomasz thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT packkeunhwan thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT boycebl secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT kramerslb secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT bosiljevactr secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT coronae secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT mooreja secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT elkhodaryk secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT simhachm secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT williamsbw secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT cerronear secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT nonna secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT hochhalterjd secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT bomaritogf secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT warnerje secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT carterbj secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT warnerdh secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT ingraffeaar secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT zhangt secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT fangx secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT luaj secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT chiaruttiniv secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT mazierem secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT feldpayets secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT yastrebovva secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT bessonj secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT chabochejl secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT lianj secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT diy secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT wub secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT novokshanovd secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT vajraguptan secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT kucharczykp secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT brinnelv secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT dobereinerb secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT munstermanns secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT neilsenmk secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT dionk secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT karlsonkn secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT foulkjw secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT brownaa secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT veilleuxmg secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT bignelljl secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT sanbornse secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT jonesca secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT mattiepd secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT chisw secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT linsp secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT mahdavia secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT predanj secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT zadravecj secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT grossaj secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT ravichandark secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT xuel secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT wierzbickitomasz secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading
AT packkeunhwan secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading