The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading
Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the curr...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Springer-Verlag
2017
|
Online Access: | http://hdl.handle.net/1721.1/109572 https://orcid.org/0000-0001-9390-9691 https://orcid.org/0000-0003-3075-9598 |
_version_ | 1826202846179098624 |
---|---|
author | Boyce, B. L Kramer, S. L B Bosiljevac, T. R Corona, E. Moore, J. A Elkhodary, K. Simha, C. H M Williams, B. W Cerrone, A. R Nonn, A. Hochhalter, J. D Bomarito, G. F Warner, J. E Carter, B. J Warner, D. H Ingraffea, A. R Zhang, T. Fang, X. Lua, J. Chiaruttini, V. Mazière, M. Feld-Payet, S. Yastrebov, V. A Besson, J. Chaboche, J.-L. Lian, J. Di, Y. Wu, B. Novokshanov, D. Vajragupta, N. Kucharczyk, P. Brinnel, V. Döbereiner, B. Münstermann, S. Neilsen, M. K Dion, K. Karlson, K. N Foulk, J. W Brown, A. A Veilleux, M. G Bignell, J. L Sanborn, S. E Jones, C. A Mattie, P. D Chi, S.-W. Lin, S.-P. Mahdavi, A. Predan, J. Zadravec, J. Gross, A. J Ravi-Chandar, K. Xue, L. Wierzbicki, Tomasz Pack, Keun Hwan |
author2 | Massachusetts Institute of Technology. Department of Mechanical Engineering |
author_facet | Massachusetts Institute of Technology. Department of Mechanical Engineering Boyce, B. L Kramer, S. L B Bosiljevac, T. R Corona, E. Moore, J. A Elkhodary, K. Simha, C. H M Williams, B. W Cerrone, A. R Nonn, A. Hochhalter, J. D Bomarito, G. F Warner, J. E Carter, B. J Warner, D. H Ingraffea, A. R Zhang, T. Fang, X. Lua, J. Chiaruttini, V. Mazière, M. Feld-Payet, S. Yastrebov, V. A Besson, J. Chaboche, J.-L. Lian, J. Di, Y. Wu, B. Novokshanov, D. Vajragupta, N. Kucharczyk, P. Brinnel, V. Döbereiner, B. Münstermann, S. Neilsen, M. K Dion, K. Karlson, K. N Foulk, J. W Brown, A. A Veilleux, M. G Bignell, J. L Sanborn, S. E Jones, C. A Mattie, P. D Chi, S.-W. Lin, S.-P. Mahdavi, A. Predan, J. Zadravec, J. Gross, A. J Ravi-Chandar, K. Xue, L. Wierzbicki, Tomasz Pack, Keun Hwan |
author_sort | Boyce, B. L |
collection | MIT |
description | Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Rather than evaluate the predictions of a single simulation approach, the Sandia Fracture Challenge relies on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in ∼∼ 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. Additional shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the ‘state-of-the-art’ in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods. |
first_indexed | 2024-09-23T12:21:49Z |
format | Article |
id | mit-1721.1/109572 |
institution | Massachusetts Institute of Technology |
language | English |
last_indexed | 2024-09-23T12:21:49Z |
publishDate | 2017 |
publisher | Springer-Verlag |
record_format | dspace |
spelling | mit-1721.1/1095722022-09-28T07:52:37Z The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading Boyce, B. L Kramer, S. L B Bosiljevac, T. R Corona, E. Moore, J. A Elkhodary, K. Simha, C. H M Williams, B. W Cerrone, A. R Nonn, A. Hochhalter, J. D Bomarito, G. F Warner, J. E Carter, B. J Warner, D. H Ingraffea, A. R Zhang, T. Fang, X. Lua, J. Chiaruttini, V. Mazière, M. Feld-Payet, S. Yastrebov, V. A Besson, J. Chaboche, J.-L. Lian, J. Di, Y. Wu, B. Novokshanov, D. Vajragupta, N. Kucharczyk, P. Brinnel, V. Döbereiner, B. Münstermann, S. Neilsen, M. K Dion, K. Karlson, K. N Foulk, J. W Brown, A. A Veilleux, M. G Bignell, J. L Sanborn, S. E Jones, C. A Mattie, P. D Chi, S.-W. Lin, S.-P. Mahdavi, A. Predan, J. Zadravec, J. Gross, A. J Ravi-Chandar, K. Xue, L. Wierzbicki, Tomasz Pack, Keun Hwan Massachusetts Institute of Technology. Department of Mechanical Engineering Wierzbicki, Tomasz Pack, Keun Hwan Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Rather than evaluate the predictions of a single simulation approach, the Sandia Fracture Challenge relies on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in ∼∼ 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. Additional shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the ‘state-of-the-art’ in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods. National Science Foundation (U.S.) 2017-06-02T21:42:20Z 2017-06-02T21:42:20Z 2016-03 2015-11 2016-05-23T09:35:54Z Article http://purl.org/eprint/type/JournalArticle 0376-9429 1573-2673 http://hdl.handle.net/1721.1/109572 Boyce, B. L. et al. “The Second Sandia Fracture Challenge: Predictions of Ductile Failure under Quasi-Static and Moderate-Rate Dynamic Loading.” International Journal of Fracture 198.1–2 (2016): 5–100. https://orcid.org/0000-0001-9390-9691 https://orcid.org/0000-0003-3075-9598 en http://dx.doi.org/10.1007/s10704-016-0089-7 International Journal of Fracture Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/ The Author(s) application/pdf Springer-Verlag Springer Netherlands |
spellingShingle | Boyce, B. L Kramer, S. L B Bosiljevac, T. R Corona, E. Moore, J. A Elkhodary, K. Simha, C. H M Williams, B. W Cerrone, A. R Nonn, A. Hochhalter, J. D Bomarito, G. F Warner, J. E Carter, B. J Warner, D. H Ingraffea, A. R Zhang, T. Fang, X. Lua, J. Chiaruttini, V. Mazière, M. Feld-Payet, S. Yastrebov, V. A Besson, J. Chaboche, J.-L. Lian, J. Di, Y. Wu, B. Novokshanov, D. Vajragupta, N. Kucharczyk, P. Brinnel, V. Döbereiner, B. Münstermann, S. Neilsen, M. K Dion, K. Karlson, K. N Foulk, J. W Brown, A. A Veilleux, M. G Bignell, J. L Sanborn, S. E Jones, C. A Mattie, P. D Chi, S.-W. Lin, S.-P. Mahdavi, A. Predan, J. Zadravec, J. Gross, A. J Ravi-Chandar, K. Xue, L. Wierzbicki, Tomasz Pack, Keun Hwan The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading |
title | The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading |
title_full | The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading |
title_fullStr | The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading |
title_full_unstemmed | The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading |
title_short | The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading |
title_sort | second sandia fracture challenge predictions of ductile failure under quasi static and moderate rate dynamic loading |
url | http://hdl.handle.net/1721.1/109572 https://orcid.org/0000-0001-9390-9691 https://orcid.org/0000-0003-3075-9598 |
work_keys_str_mv | AT boycebl thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT kramerslb thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT bosiljevactr thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT coronae thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT mooreja thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT elkhodaryk thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT simhachm thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT williamsbw thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT cerronear thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT nonna thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT hochhalterjd thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT bomaritogf thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT warnerje thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT carterbj thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT warnerdh thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT ingraffeaar thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT zhangt thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT fangx thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT luaj thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT chiaruttiniv thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT mazierem thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT feldpayets thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT yastrebovva thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT bessonj thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT chabochejl thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT lianj thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT diy thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT wub thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT novokshanovd thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT vajraguptan thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT kucharczykp thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT brinnelv thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT dobereinerb thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT munstermanns thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT neilsenmk thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT dionk thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT karlsonkn thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT foulkjw thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT brownaa thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT veilleuxmg thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT bignelljl thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT sanbornse thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT jonesca thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT mattiepd thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT chisw thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT linsp thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT mahdavia thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT predanj thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT zadravecj thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT grossaj thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT ravichandark thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT xuel thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT wierzbickitomasz thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT packkeunhwan thesecondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT boycebl secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT kramerslb secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT bosiljevactr secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT coronae secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT mooreja secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT elkhodaryk secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT simhachm secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT williamsbw secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT cerronear secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT nonna secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT hochhalterjd secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT bomaritogf secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT warnerje secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT carterbj secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT warnerdh secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT ingraffeaar secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT zhangt secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT fangx secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT luaj secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT chiaruttiniv secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT mazierem secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT feldpayets secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT yastrebovva secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT bessonj secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT chabochejl secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT lianj secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT diy secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT wub secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT novokshanovd secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT vajraguptan secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT kucharczykp secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT brinnelv secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT dobereinerb secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT munstermanns secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT neilsenmk secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT dionk secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT karlsonkn secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT foulkjw secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT brownaa secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT veilleuxmg secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT bignelljl secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT sanbornse secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT jonesca secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT mattiepd secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT chisw secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT linsp secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT mahdavia secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT predanj secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT zadravecj secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT grossaj secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT ravichandark secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT xuel secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT wierzbickitomasz secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading AT packkeunhwan secondsandiafracturechallengepredictionsofductilefailureunderquasistaticandmoderateratedynamicloading |