Minimal Models for Nonreciprocal Amplification Using Biharmonic Drives
We present a generic system of three bosonic modes coupled parametrically with a time-varying coupling modulated by a combination of two pump harmonics, and we show how this system provides the minimal platform for realizing nonreciprocal couplings that can lead to gainless photon circulation, and p...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
American Physical Society
2017
|
Online Access: | http://hdl.handle.net/1721.1/109574 https://orcid.org/0000-0001-5430-9837 |
Summary: | We present a generic system of three bosonic modes coupled parametrically with a time-varying coupling modulated by a combination of two pump harmonics, and we show how this system provides the minimal platform for realizing nonreciprocal couplings that can lead to gainless photon circulation, and phase-preserving or phase-sensitive directional amplification. Explicit frequency-dependent calculations within this minimal paradigm highlight the separation of amplification and directionality bandwidths, a feature generic to such schemes. We also study the influence of counterrotating interactions that can adversely affect directionality and the associated bandwidth; we find that these effects can be mitigated by suitably designing the properties of the auxiliary mode that plays the role of an engineered reservoir to the amplification mode space. |
---|