Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH
Perovskite oxides (ABO[subscript 3]) have been studied extensively to promote the kinetics of the oxygen evolution reaction (OER) in alkaline electrolytes. However, developing highly active catalysts for OER at near-neutral pH is desirable for many photoelectrochemical/electrochemical devices. In th...
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Royal Society of Chemistry, The
2017
|
Online Access: | http://hdl.handle.net/1721.1/109591 https://orcid.org/0000-0002-2919-3235 https://orcid.org/0000-0003-2820-7006 https://orcid.org/0000-0003-2477-6412 |
Summary: | Perovskite oxides (ABO[subscript 3]) have been studied extensively to promote the kinetics of the oxygen evolution reaction (OER) in alkaline electrolytes. However, developing highly active catalysts for OER at near-neutral pH is desirable for many photoelectrochemical/electrochemical devices. In this paper, we systematically studied the activity and stability of well-known perovskite oxides for OER at pH 7. Previous activity descriptors established for perovskite oxides at pH 13, such as having an e[subscript g] occupancy close to unity or having an O p-band center close to Fermi level, were shown to scale with OER activity at pH 7. Stability was a greater challenge at pH 7 than at pH 13, where two different modes of instability were identified from combined transmission electron microscopy and density functional theory analyses. Perovskites with O p-band close to Fermi level showed leaching of A-site atoms and surface amorphization under all overpotentials examined at pH 7, while those with O p-band far from Fermi level were stable under low OER current/potential but became unstable at high current/potential accompanied by leaching of B-site atoms. Therefore, efforts are needed to enhance the activity and stability of perovskites against A-site or B-site loss if used at neutral pH. |
---|