Converted-wave seismic imaging: Amplitude-balancing source-independent imaging conditions

We have developed crosscorrelational and deconvolutional forms of a source-independent converted-wave imaging condition (SICW-IC) and show the relationship between them using a concept of conversion ratio coefficient, a concept that we developed through reflection, transmission, and conversion coeff...

Full description

Bibliographic Details
Main Authors: Shabelansky, Andrey Hanan, Malcolm, Alison E., Fehler, Michael
Other Authors: Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Format: Article
Language:en_US
Published: Society of Exploration Geophysicists 2017
Online Access:http://hdl.handle.net/1721.1/110016
https://orcid.org/0000-0002-8814-5495
Description
Summary:We have developed crosscorrelational and deconvolutional forms of a source-independent converted-wave imaging condition (SICW-IC) and show the relationship between them using a concept of conversion ratio coefficient, a concept that we developed through reflection, transmission, and conversion coefficients. We applied the SICW-ICs to a two half-space model and the synthetic Marmousi I and II models and show the sensitivity of the SICW-ICs to incorrect wave speed models. We also compare the SICW-ICs and source-dependent elastic reverse time migration. The results of SICW-ICs highlight the improvements in spatial resolution and amplitude balancing with the deconvolutional forms. This is an attractive alternative to active and passive source elastic imaging.