Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge

CMOS platforms operating at the telecommunications wavelength either reside within the highly dissipative two-photon regime in silicon-based optical devices, or possess small nonlinearities. Bandgap engineering of non-stoichiometric silicon nitride using state-of-the-art fabrication techniques has l...

Full description

Bibliographic Details
Main Authors: Ooi, K. J. A., Ng, D. K. T., Wang, T., Chee, A. K. L., Ng, S. K., Wang, Q., Ang, L. K., Tan, D. T. H., Agarwal, Anuradha, Kimerling, Lionel C
Other Authors: Massachusetts Institute of Technology. Materials Processing Center
Format: Article
Language:en_US
Published: Nature Publishing Group 2017
Online Access:http://hdl.handle.net/1721.1/110129
https://orcid.org/0000-0002-3913-6189
_version_ 1826191005079044096
author Ooi, K. J. A.
Ng, D. K. T.
Wang, T.
Chee, A. K. L.
Ng, S. K.
Wang, Q.
Ang, L. K.
Tan, D. T. H.
Agarwal, Anuradha
Kimerling, Lionel C
author2 Massachusetts Institute of Technology. Materials Processing Center
author_facet Massachusetts Institute of Technology. Materials Processing Center
Ooi, K. J. A.
Ng, D. K. T.
Wang, T.
Chee, A. K. L.
Ng, S. K.
Wang, Q.
Ang, L. K.
Tan, D. T. H.
Agarwal, Anuradha
Kimerling, Lionel C
author_sort Ooi, K. J. A.
collection MIT
description CMOS platforms operating at the telecommunications wavelength either reside within the highly dissipative two-photon regime in silicon-based optical devices, or possess small nonlinearities. Bandgap engineering of non-stoichiometric silicon nitride using state-of-the-art fabrication techniques has led to our development of USRN (ultra-silicon-rich nitride) in the form of Si[subscript 7]N[subscript 3], that possesses a high Kerr nonlinearity (2.8 × 10[superscript −13] cm[superscript 2] W[superscript −1]), an order of magnitude larger than that in stoichiometric silicon nitride. Here we experimentally demonstrate high-gain optical parametric amplification using USRN, which is compositionally tailored such that the 1,550 nm wavelength resides above the two-photon absorption edge, while still possessing large nonlinearities. Optical parametric gain of 42.5 dB, as well as cascaded four-wave mixing with gain down to the third idler is observed and attributed to the high photon efficiency achieved through operating above the two-photon absorption edge, representing one of the largest optical parametric gains to date on a CMOS platform.
first_indexed 2024-09-23T08:48:38Z
format Article
id mit-1721.1/110129
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T08:48:38Z
publishDate 2017
publisher Nature Publishing Group
record_format dspace
spelling mit-1721.1/1101292022-09-30T11:26:35Z Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge Ooi, K. J. A. Ng, D. K. T. Wang, T. Chee, A. K. L. Ng, S. K. Wang, Q. Ang, L. K. Tan, D. T. H. Agarwal, Anuradha Kimerling, Lionel C Massachusetts Institute of Technology. Materials Processing Center Massachusetts Institute of Technology. Department of Materials Science and Engineering Massachusetts Institute of Technology. Microphotonics Center Agarwal, Anuradha Kimerling, Lionel C CMOS platforms operating at the telecommunications wavelength either reside within the highly dissipative two-photon regime in silicon-based optical devices, or possess small nonlinearities. Bandgap engineering of non-stoichiometric silicon nitride using state-of-the-art fabrication techniques has led to our development of USRN (ultra-silicon-rich nitride) in the form of Si[subscript 7]N[subscript 3], that possesses a high Kerr nonlinearity (2.8 × 10[superscript −13] cm[superscript 2] W[superscript −1]), an order of magnitude larger than that in stoichiometric silicon nitride. Here we experimentally demonstrate high-gain optical parametric amplification using USRN, which is compositionally tailored such that the 1,550 nm wavelength resides above the two-photon absorption edge, while still possessing large nonlinearities. Optical parametric gain of 42.5 dB, as well as cascaded four-wave mixing with gain down to the third idler is observed and attributed to the high photon efficiency achieved through operating above the two-photon absorption edge, representing one of the largest optical parametric gains to date on a CMOS platform. Singapore Ministry of Education. Academic Research Fund (AcRF) Tier 2 grant Singapore. Agency for Science, Technology and Research (PSF grant) SUTD-MIT International Design Centre (IDC) Temasek Laboratories National Research Foundation of Singapore (Medium Sized Centre Program) 2017-06-21T17:54:15Z 2017-06-21T17:54:15Z 2017-01 2016-08 Article http://purl.org/eprint/type/JournalArticle 2041-1723 http://hdl.handle.net/1721.1/110129 Ooi, K. J. A., D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan. “Pushing the Limits of CMOS Optical Parametric Amplifiers with USRN:Si7N3 Above the Two-Photon Absorption Edge.” Nature Communications 8 (January 4, 2017): 13878. https://orcid.org/0000-0002-3913-6189 en_US http://dx.doi.org/10.1038/ncomms13878 Nature Communications Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/ application/pdf Nature Publishing Group Nature
spellingShingle Ooi, K. J. A.
Ng, D. K. T.
Wang, T.
Chee, A. K. L.
Ng, S. K.
Wang, Q.
Ang, L. K.
Tan, D. T. H.
Agarwal, Anuradha
Kimerling, Lionel C
Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge
title Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge
title_full Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge
title_fullStr Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge
title_full_unstemmed Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge
title_short Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge
title_sort pushing the limits of cmos optical parametric amplifiers with usrn si7n3 above the two photon absorption edge
url http://hdl.handle.net/1721.1/110129
https://orcid.org/0000-0002-3913-6189
work_keys_str_mv AT ooikja pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge
AT ngdkt pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge
AT wangt pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge
AT cheeakl pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge
AT ngsk pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge
AT wangq pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge
AT anglk pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge
AT tandth pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge
AT agarwalanuradha pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge
AT kimerlinglionelc pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge