Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge
CMOS platforms operating at the telecommunications wavelength either reside within the highly dissipative two-photon regime in silicon-based optical devices, or possess small nonlinearities. Bandgap engineering of non-stoichiometric silicon nitride using state-of-the-art fabrication techniques has l...
Main Authors: | , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Nature Publishing Group
2017
|
Online Access: | http://hdl.handle.net/1721.1/110129 https://orcid.org/0000-0002-3913-6189 |
_version_ | 1826191005079044096 |
---|---|
author | Ooi, K. J. A. Ng, D. K. T. Wang, T. Chee, A. K. L. Ng, S. K. Wang, Q. Ang, L. K. Tan, D. T. H. Agarwal, Anuradha Kimerling, Lionel C |
author2 | Massachusetts Institute of Technology. Materials Processing Center |
author_facet | Massachusetts Institute of Technology. Materials Processing Center Ooi, K. J. A. Ng, D. K. T. Wang, T. Chee, A. K. L. Ng, S. K. Wang, Q. Ang, L. K. Tan, D. T. H. Agarwal, Anuradha Kimerling, Lionel C |
author_sort | Ooi, K. J. A. |
collection | MIT |
description | CMOS platforms operating at the telecommunications wavelength either reside within the highly dissipative two-photon regime in silicon-based optical devices, or possess small nonlinearities. Bandgap engineering of non-stoichiometric silicon nitride using state-of-the-art fabrication techniques has led to our development of USRN (ultra-silicon-rich nitride) in the form of Si[subscript 7]N[subscript 3], that possesses a high Kerr nonlinearity (2.8 × 10[superscript −13] cm[superscript 2] W[superscript −1]), an order of magnitude larger than that in stoichiometric silicon nitride. Here we experimentally demonstrate high-gain optical parametric amplification using USRN, which is compositionally tailored such that the 1,550 nm wavelength resides above the two-photon absorption edge, while still possessing large nonlinearities. Optical parametric gain of 42.5 dB, as well as cascaded four-wave mixing with gain down to the third idler is observed and attributed to the high photon efficiency achieved through operating above the two-photon absorption edge, representing one of the largest optical parametric gains to date on a CMOS platform. |
first_indexed | 2024-09-23T08:48:38Z |
format | Article |
id | mit-1721.1/110129 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T08:48:38Z |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | dspace |
spelling | mit-1721.1/1101292022-09-30T11:26:35Z Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge Ooi, K. J. A. Ng, D. K. T. Wang, T. Chee, A. K. L. Ng, S. K. Wang, Q. Ang, L. K. Tan, D. T. H. Agarwal, Anuradha Kimerling, Lionel C Massachusetts Institute of Technology. Materials Processing Center Massachusetts Institute of Technology. Department of Materials Science and Engineering Massachusetts Institute of Technology. Microphotonics Center Agarwal, Anuradha Kimerling, Lionel C CMOS platforms operating at the telecommunications wavelength either reside within the highly dissipative two-photon regime in silicon-based optical devices, or possess small nonlinearities. Bandgap engineering of non-stoichiometric silicon nitride using state-of-the-art fabrication techniques has led to our development of USRN (ultra-silicon-rich nitride) in the form of Si[subscript 7]N[subscript 3], that possesses a high Kerr nonlinearity (2.8 × 10[superscript −13] cm[superscript 2] W[superscript −1]), an order of magnitude larger than that in stoichiometric silicon nitride. Here we experimentally demonstrate high-gain optical parametric amplification using USRN, which is compositionally tailored such that the 1,550 nm wavelength resides above the two-photon absorption edge, while still possessing large nonlinearities. Optical parametric gain of 42.5 dB, as well as cascaded four-wave mixing with gain down to the third idler is observed and attributed to the high photon efficiency achieved through operating above the two-photon absorption edge, representing one of the largest optical parametric gains to date on a CMOS platform. Singapore Ministry of Education. Academic Research Fund (AcRF) Tier 2 grant Singapore. Agency for Science, Technology and Research (PSF grant) SUTD-MIT International Design Centre (IDC) Temasek Laboratories National Research Foundation of Singapore (Medium Sized Centre Program) 2017-06-21T17:54:15Z 2017-06-21T17:54:15Z 2017-01 2016-08 Article http://purl.org/eprint/type/JournalArticle 2041-1723 http://hdl.handle.net/1721.1/110129 Ooi, K. J. A., D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan. “Pushing the Limits of CMOS Optical Parametric Amplifiers with USRN:Si7N3 Above the Two-Photon Absorption Edge.” Nature Communications 8 (January 4, 2017): 13878. https://orcid.org/0000-0002-3913-6189 en_US http://dx.doi.org/10.1038/ncomms13878 Nature Communications Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/ application/pdf Nature Publishing Group Nature |
spellingShingle | Ooi, K. J. A. Ng, D. K. T. Wang, T. Chee, A. K. L. Ng, S. K. Wang, Q. Ang, L. K. Tan, D. T. H. Agarwal, Anuradha Kimerling, Lionel C Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge |
title | Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge |
title_full | Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge |
title_fullStr | Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge |
title_full_unstemmed | Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge |
title_short | Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge |
title_sort | pushing the limits of cmos optical parametric amplifiers with usrn si7n3 above the two photon absorption edge |
url | http://hdl.handle.net/1721.1/110129 https://orcid.org/0000-0002-3913-6189 |
work_keys_str_mv | AT ooikja pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge AT ngdkt pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge AT wangt pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge AT cheeakl pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge AT ngsk pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge AT wangq pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge AT anglk pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge AT tandth pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge AT agarwalanuradha pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge AT kimerlinglionelc pushingthelimitsofcmosopticalparametricamplifierswithusrnsi7n3abovethetwophotonabsorptionedge |