Coherent Two-Dimensional Terahertz Magnetic Resonance Spectroscopy of Collective Spin Waves
We report a demonstration of two-dimensional (2D) terahertz (THz) magnetic resonance spectroscopy using the magnetic fields of two time-delayed THz pulses. We apply the methodology to directly reveal the nonlinear responses of collective spin waves (magnons) in a canted antiferromagnetic crystal. Th...
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
American Physical Society
2017
|
Online Access: | http://hdl.handle.net/1721.1/110194 https://orcid.org/0000-0002-7706-8121 https://orcid.org/0000-0003-1322-4786 https://orcid.org/0000-0002-0737-6786 https://orcid.org/0000-0001-7804-5418 |
Summary: | We report a demonstration of two-dimensional (2D) terahertz (THz) magnetic resonance spectroscopy using the magnetic fields of two time-delayed THz pulses. We apply the methodology to directly reveal the nonlinear responses of collective spin waves (magnons) in a canted antiferromagnetic crystal. The 2D THz spectra show all of the third-order nonlinear magnon signals including magnon spin echoes, and 2-quantum signals that reveal pairwise correlations between magnons at the Brillouin zone center. We also observe second-order nonlinear magnon signals showing resonance-enhanced second-harmonic and difference-frequency generation. Numerical simulations of the spin dynamics reproduce all of the spectral features in excellent agreement with the experimental 2D THz spectra. |
---|