Engineering a 3D microfluidic culture platform for tumor-treating field application

The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-canc...

Full description

Bibliographic Details
Main Authors: Tay, Andy, Warkiani, Majid Ebrahimi, Yeap, Wei Hseun, Wong, Siew Cheng, Pavesi, Andrea, Adriani, Giulia, Kamm, Roger Dale
Other Authors: Massachusetts Institute of Technology. Department of Biological Engineering
Format: Article
Language:en_US
Published: Nature Publishing Group 2017
Online Access:http://hdl.handle.net/1721.1/110351
https://orcid.org/0000-0002-7232-304X
Description
Summary:The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy.