Quantum Effects in the Thermoelectric Power Factor of Low-Dimensional Semiconductors

We theoretically investigate the interplay between the confinement length L and the thermal de Broglie wavelength Λ to optimize the thermoelectric power factor of semiconducting materials. An analytical formula for the power factor is derived based on the one-band model assuming nondegenerate semico...

Full description

Bibliographic Details
Main Authors: Hung, Nguyen T., Hasdeo, Eddwi H., Nugraha, Ahmad R. T., Saito, Riichiro, Dresselhaus, Mildred
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Language:English
Published: American Physical Society 2017
Online Access:http://hdl.handle.net/1721.1/110510
https://orcid.org/0000-0001-8492-2261
Description
Summary:We theoretically investigate the interplay between the confinement length L and the thermal de Broglie wavelength Λ to optimize the thermoelectric power factor of semiconducting materials. An analytical formula for the power factor is derived based on the one-band model assuming nondegenerate semiconductors to describe quantum effects on the power factor of the low-dimensional semiconductors. The power factor is enhanced for one- and two-dimensional semiconductors when L is smaller than Λ of the semiconductors. In this case, the low-dimensional semiconductors having L smaller than their Λ will give a better thermoelectric performance compared to their bulk counterpart. On the other hand, when L is larger than Λ, bulk semiconductors may give a higher power factor compared to the lower dimensional ones.