A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system
We report the development of a new instrument that combines chirped-pulse microwave spectroscopy with a pulsed uniform supersonic flow. This combination promises a nearly universal detection method that can deliver isomer and conformer specific, quantitative detection and spectroscopic characterizat...
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Institute of Physics (AIP)
2017
|
Online Access: | http://hdl.handle.net/1721.1/110562 https://orcid.org/0000-0002-7609-4205 |
_version_ | 1826205678534918144 |
---|---|
author | Oldham, James M. Abeysekera, Chamara Joalland, Baptiste Zack, Lindsay N. Prozument, Kirill Sims, Ian R. Suits, Arthur G. Park III, George Barratt Field, Robert W |
author2 | Massachusetts Institute of Technology. Department of Chemistry |
author_facet | Massachusetts Institute of Technology. Department of Chemistry Oldham, James M. Abeysekera, Chamara Joalland, Baptiste Zack, Lindsay N. Prozument, Kirill Sims, Ian R. Suits, Arthur G. Park III, George Barratt Field, Robert W |
author_sort | Oldham, James M. |
collection | MIT |
description | We report the development of a new instrument that combines chirped-pulse microwave spectroscopy with a pulsed uniform supersonic flow. This combination promises a nearly universal detection method that can deliver isomer and conformer specific, quantitative detection and spectroscopic characterization of unstable reaction products and intermediates, product vibrational distributions, and molecular excited states. This first paper in a series of two presents a new pulsed-flow design, at the heart of which is a fast, high-throughput pulsed valve driven by a piezoelectric stack actuator. Uniform flows at temperatures as low as 20 K were readily achieved with only modest pumping requirements, as demonstrated by impact pressure measurements and pure rotational spectroscopy. The proposed technique will be suitable for application in diverse fields including fundamental studies in spectroscopy, kinetics, and reaction dynamics. |
first_indexed | 2024-09-23T13:16:53Z |
format | Article |
id | mit-1721.1/110562 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T13:16:53Z |
publishDate | 2017 |
publisher | American Institute of Physics (AIP) |
record_format | dspace |
spelling | mit-1721.1/1105622022-09-28T13:08:40Z A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system Oldham, James M. Abeysekera, Chamara Joalland, Baptiste Zack, Lindsay N. Prozument, Kirill Sims, Ian R. Suits, Arthur G. Park III, George Barratt Field, Robert W Massachusetts Institute of Technology. Department of Chemistry Park III, George Barratt Field, Robert W We report the development of a new instrument that combines chirped-pulse microwave spectroscopy with a pulsed uniform supersonic flow. This combination promises a nearly universal detection method that can deliver isomer and conformer specific, quantitative detection and spectroscopic characterization of unstable reaction products and intermediates, product vibrational distributions, and molecular excited states. This first paper in a series of two presents a new pulsed-flow design, at the heart of which is a fast, high-throughput pulsed valve driven by a piezoelectric stack actuator. Uniform flows at temperatures as low as 20 K were readily achieved with only modest pumping requirements, as demonstrated by impact pressure measurements and pure rotational spectroscopy. The proposed technique will be suitable for application in diverse fields including fundamental studies in spectroscopy, kinetics, and reaction dynamics. National Science Foundation (U.S.) (Award MRI-ID 1126380) 2017-07-07T20:14:54Z 2017-07-07T20:14:54Z 2014-10 2014-08 Article http://purl.org/eprint/type/JournalArticle 0021-9606 1089-7690 http://hdl.handle.net/1721.1/110562 Oldham, James M. et al. “A Chirped-Pulse Fourier-Transform Microwave/Pulsed Uniform Flow Spectrometer. I. The Low-Temperature Flow System.” The Journal of Chemical Physics 141.15 (2014): 154202. © 2014 AIP Publishing LLC https://orcid.org/0000-0002-7609-4205 en_US http://dx.doi.org/10.1063/1.4897979 The Journal of Chemical Physics Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf American Institute of Physics (AIP) Other univ. web domain |
spellingShingle | Oldham, James M. Abeysekera, Chamara Joalland, Baptiste Zack, Lindsay N. Prozument, Kirill Sims, Ian R. Suits, Arthur G. Park III, George Barratt Field, Robert W A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system |
title | A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system |
title_full | A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system |
title_fullStr | A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system |
title_full_unstemmed | A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system |
title_short | A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system |
title_sort | chirped pulse fourier transform microwave pulsed uniform flow spectrometer i the low temperature flow system |
url | http://hdl.handle.net/1721.1/110562 https://orcid.org/0000-0002-7609-4205 |
work_keys_str_mv | AT oldhamjamesm achirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem AT abeysekerachamara achirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem AT joallandbaptiste achirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem AT zacklindsayn achirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem AT prozumentkirill achirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem AT simsianr achirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem AT suitsarthurg achirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem AT parkiiigeorgebarratt achirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem AT fieldrobertw achirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem AT oldhamjamesm chirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem AT abeysekerachamara chirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem AT joallandbaptiste chirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem AT zacklindsayn chirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem AT prozumentkirill chirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem AT simsianr chirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem AT suitsarthurg chirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem AT parkiiigeorgebarratt chirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem AT fieldrobertw chirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem |