A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system

We report the development of a new instrument that combines chirped-pulse microwave spectroscopy with a pulsed uniform supersonic flow. This combination promises a nearly universal detection method that can deliver isomer and conformer specific, quantitative detection and spectroscopic characterizat...

Full description

Bibliographic Details
Main Authors: Oldham, James M., Abeysekera, Chamara, Joalland, Baptiste, Zack, Lindsay N., Prozument, Kirill, Sims, Ian R., Suits, Arthur G., Park III, George Barratt, Field, Robert W
Other Authors: Massachusetts Institute of Technology. Department of Chemistry
Format: Article
Language:en_US
Published: American Institute of Physics (AIP) 2017
Online Access:http://hdl.handle.net/1721.1/110562
https://orcid.org/0000-0002-7609-4205
_version_ 1826205678534918144
author Oldham, James M.
Abeysekera, Chamara
Joalland, Baptiste
Zack, Lindsay N.
Prozument, Kirill
Sims, Ian R.
Suits, Arthur G.
Park III, George Barratt
Field, Robert W
author2 Massachusetts Institute of Technology. Department of Chemistry
author_facet Massachusetts Institute of Technology. Department of Chemistry
Oldham, James M.
Abeysekera, Chamara
Joalland, Baptiste
Zack, Lindsay N.
Prozument, Kirill
Sims, Ian R.
Suits, Arthur G.
Park III, George Barratt
Field, Robert W
author_sort Oldham, James M.
collection MIT
description We report the development of a new instrument that combines chirped-pulse microwave spectroscopy with a pulsed uniform supersonic flow. This combination promises a nearly universal detection method that can deliver isomer and conformer specific, quantitative detection and spectroscopic characterization of unstable reaction products and intermediates, product vibrational distributions, and molecular excited states. This first paper in a series of two presents a new pulsed-flow design, at the heart of which is a fast, high-throughput pulsed valve driven by a piezoelectric stack actuator. Uniform flows at temperatures as low as 20 K were readily achieved with only modest pumping requirements, as demonstrated by impact pressure measurements and pure rotational spectroscopy. The proposed technique will be suitable for application in diverse fields including fundamental studies in spectroscopy, kinetics, and reaction dynamics.
first_indexed 2024-09-23T13:16:53Z
format Article
id mit-1721.1/110562
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T13:16:53Z
publishDate 2017
publisher American Institute of Physics (AIP)
record_format dspace
spelling mit-1721.1/1105622022-09-28T13:08:40Z A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system Oldham, James M. Abeysekera, Chamara Joalland, Baptiste Zack, Lindsay N. Prozument, Kirill Sims, Ian R. Suits, Arthur G. Park III, George Barratt Field, Robert W Massachusetts Institute of Technology. Department of Chemistry Park III, George Barratt Field, Robert W We report the development of a new instrument that combines chirped-pulse microwave spectroscopy with a pulsed uniform supersonic flow. This combination promises a nearly universal detection method that can deliver isomer and conformer specific, quantitative detection and spectroscopic characterization of unstable reaction products and intermediates, product vibrational distributions, and molecular excited states. This first paper in a series of two presents a new pulsed-flow design, at the heart of which is a fast, high-throughput pulsed valve driven by a piezoelectric stack actuator. Uniform flows at temperatures as low as 20 K were readily achieved with only modest pumping requirements, as demonstrated by impact pressure measurements and pure rotational spectroscopy. The proposed technique will be suitable for application in diverse fields including fundamental studies in spectroscopy, kinetics, and reaction dynamics. National Science Foundation (U.S.) (Award MRI-ID 1126380) 2017-07-07T20:14:54Z 2017-07-07T20:14:54Z 2014-10 2014-08 Article http://purl.org/eprint/type/JournalArticle 0021-9606 1089-7690 http://hdl.handle.net/1721.1/110562 Oldham, James M. et al. “A Chirped-Pulse Fourier-Transform Microwave/Pulsed Uniform Flow Spectrometer. I. The Low-Temperature Flow System.” The Journal of Chemical Physics 141.15 (2014): 154202. © 2014 AIP Publishing LLC https://orcid.org/0000-0002-7609-4205 en_US http://dx.doi.org/10.1063/1.4897979 The Journal of Chemical Physics Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf American Institute of Physics (AIP) Other univ. web domain
spellingShingle Oldham, James M.
Abeysekera, Chamara
Joalland, Baptiste
Zack, Lindsay N.
Prozument, Kirill
Sims, Ian R.
Suits, Arthur G.
Park III, George Barratt
Field, Robert W
A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system
title A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system
title_full A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system
title_fullStr A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system
title_full_unstemmed A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system
title_short A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system
title_sort chirped pulse fourier transform microwave pulsed uniform flow spectrometer i the low temperature flow system
url http://hdl.handle.net/1721.1/110562
https://orcid.org/0000-0002-7609-4205
work_keys_str_mv AT oldhamjamesm achirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem
AT abeysekerachamara achirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem
AT joallandbaptiste achirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem
AT zacklindsayn achirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem
AT prozumentkirill achirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem
AT simsianr achirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem
AT suitsarthurg achirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem
AT parkiiigeorgebarratt achirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem
AT fieldrobertw achirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem
AT oldhamjamesm chirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem
AT abeysekerachamara chirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem
AT joallandbaptiste chirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem
AT zacklindsayn chirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem
AT prozumentkirill chirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem
AT simsianr chirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem
AT suitsarthurg chirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem
AT parkiiigeorgebarratt chirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem
AT fieldrobertw chirpedpulsefouriertransformmicrowavepulseduniformflowspectrometerithelowtemperatureflowsystem