General β-Jacobi Corners Process and the Gaussian Free Field

We prove that the two-dimensional Gaussian free field describes the asymptotics of global fluctuations of a multilevel extension of the general β-Jacobi random matrix ensembles. Our approach is based on the connection of the Jacobi ensembles to a degeneration of the Macdonald processes that parallel...

Full description

Bibliographic Details
Main Authors: Borodin, Alexei, Gorin, Vadim
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Language:en_US
Published: Wiley Blackwell 2017
Online Access:http://hdl.handle.net/1721.1/110685
https://orcid.org/0000-0002-2913-5238
https://orcid.org/0000-0002-9828-5862
_version_ 1811069229615546368
author Borodin, Alexei
Gorin, Vadim
author2 Massachusetts Institute of Technology. Department of Mathematics
author_facet Massachusetts Institute of Technology. Department of Mathematics
Borodin, Alexei
Gorin, Vadim
author_sort Borodin, Alexei
collection MIT
description We prove that the two-dimensional Gaussian free field describes the asymptotics of global fluctuations of a multilevel extension of the general β-Jacobi random matrix ensembles. Our approach is based on the connection of the Jacobi ensembles to a degeneration of the Macdonald processes that parallels the degeneration of the Macdonald polynomials to the Heckman-Opdam hypergeometric functions (of type A). We also discuss the β → ∞ limit.
first_indexed 2024-09-23T08:07:46Z
format Article
id mit-1721.1/110685
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T08:07:46Z
publishDate 2017
publisher Wiley Blackwell
record_format dspace
spelling mit-1721.1/1106852022-09-23T11:07:59Z General β-Jacobi Corners Process and the Gaussian Free Field Borodin, Alexei Gorin, Vadim Massachusetts Institute of Technology. Department of Mathematics Borodin, Alexei Gorin, Vadim We prove that the two-dimensional Gaussian free field describes the asymptotics of global fluctuations of a multilevel extension of the general β-Jacobi random matrix ensembles. Our approach is based on the connection of the Jacobi ensembles to a degeneration of the Macdonald processes that parallels the degeneration of the Macdonald polynomials to the Heckman-Opdam hypergeometric functions (of type A). We also discuss the β → ∞ limit. 2017-07-12T17:45:59Z 2017-07-12T17:45:59Z 2015-08 2013-06 Article http://purl.org/eprint/type/JournalArticle 0010-3640 1097-0312 http://hdl.handle.net/1721.1/110685 Borodin, Alexei, and Gorin, Vadim. “General β-Jacobi Corners Process and the Gaussian Free Field.” Communications on Pure and Applied Mathematics 68, no. 10 (October 2014): 1774–1844 © 2015 Wiley Periodicals, Inc https://orcid.org/0000-0002-2913-5238 https://orcid.org/0000-0002-9828-5862 en_US http://dx.doi.org/10.1002/cpa.21546 Communications on Pure and Applied Mathematics Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Wiley Blackwell arXiv
spellingShingle Borodin, Alexei
Gorin, Vadim
General β-Jacobi Corners Process and the Gaussian Free Field
title General β-Jacobi Corners Process and the Gaussian Free Field
title_full General β-Jacobi Corners Process and the Gaussian Free Field
title_fullStr General β-Jacobi Corners Process and the Gaussian Free Field
title_full_unstemmed General β-Jacobi Corners Process and the Gaussian Free Field
title_short General β-Jacobi Corners Process and the Gaussian Free Field
title_sort general β jacobi corners process and the gaussian free field
url http://hdl.handle.net/1721.1/110685
https://orcid.org/0000-0002-2913-5238
https://orcid.org/0000-0002-9828-5862
work_keys_str_mv AT borodinalexei generalbjacobicornersprocessandthegaussianfreefield
AT gorinvadim generalbjacobicornersprocessandthegaussianfreefield