Coherent Coupled Qubits for Quantum Annealing

Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents I[subscript p]. Here, we...

Full description

Bibliographic Details
Main Authors: Weber, Steven J., Samach, Gabriel O., Hover, David J., Gustavsson, Simon, Kim, David K., Melville, Alexander J., Rosenberg, Danna, Sears, Adam P., Yan, Fei, Yoder, Jonilyn Longenecker, Oliver, William D, Kerman, Andrew J
Other Authors: Lincoln Laboratory
Format: Article
Language:English
Published: American Physical Society 2017
Online Access:http://hdl.handle.net/1721.1/110691
https://orcid.org/0000-0002-7069-1025
https://orcid.org/0000-0002-4674-2806
_version_ 1826207065799917568
author Weber, Steven J.
Samach, Gabriel O.
Hover, David J.
Gustavsson, Simon
Kim, David K.
Melville, Alexander J.
Rosenberg, Danna
Sears, Adam P.
Yan, Fei
Yoder, Jonilyn Longenecker
Oliver, William D
Kerman, Andrew J
author2 Lincoln Laboratory
author_facet Lincoln Laboratory
Weber, Steven J.
Samach, Gabriel O.
Hover, David J.
Gustavsson, Simon
Kim, David K.
Melville, Alexander J.
Rosenberg, Danna
Sears, Adam P.
Yan, Fei
Yoder, Jonilyn Longenecker
Oliver, William D
Kerman, Andrew J
author_sort Weber, Steven J.
collection MIT
description Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents I[subscript p]. Here, we examine an alternative approach using qubits with smaller I[subscript p] and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.
first_indexed 2024-09-23T13:43:41Z
format Article
id mit-1721.1/110691
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T13:43:41Z
publishDate 2017
publisher American Physical Society
record_format dspace
spelling mit-1721.1/1106912022-09-28T15:47:30Z Coherent Coupled Qubits for Quantum Annealing Weber, Steven J. Samach, Gabriel O. Hover, David J. Gustavsson, Simon Kim, David K. Melville, Alexander J. Rosenberg, Danna Sears, Adam P. Yan, Fei Yoder, Jonilyn Longenecker Oliver, William D Kerman, Andrew J Lincoln Laboratory Massachusetts Institute of Technology. Department of Physics Massachusetts Institute of Technology. Research Laboratory of Electronics Weber, Steven J. Samach, Gabriel O. Hover, David J. Gustavsson, Simon Kim, David K. Melville, Alexander J. Rosenberg, Danna Sears, Adam P. Yan, Fei Yoder, Jonilyn Longenecker Oliver, William D Kerman, Andrew J Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents I[subscript p]. Here, we examine an alternative approach using qubits with smaller I[subscript p] and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence. United States. Office of the Director of National Intelligence United States. Intelligence Advanced Research Projects Activity United States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (FA8721-05-C-0002) 2017-07-12T19:01:13Z 2017-07-12T19:01:13Z 2017-07 2017-01 2017-07-11T19:08:38Z Article http://purl.org/eprint/type/JournalArticle 2331-7019 http://hdl.handle.net/1721.1/110691 Weber, Steven J. et al. “Coherent Coupled Qubits for Quantum Annealing.” Physical Review Applied 8.1 (2017): n. pag. © 2017 American Physical Society https://orcid.org/0000-0002-7069-1025 https://orcid.org/0000-0002-4674-2806 en http://dx.doi.org/10.1103/PhysRevApplied.8.014004 Physical Review Applied Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. American Physical Society application/pdf American Physical Society American Physical Society
spellingShingle Weber, Steven J.
Samach, Gabriel O.
Hover, David J.
Gustavsson, Simon
Kim, David K.
Melville, Alexander J.
Rosenberg, Danna
Sears, Adam P.
Yan, Fei
Yoder, Jonilyn Longenecker
Oliver, William D
Kerman, Andrew J
Coherent Coupled Qubits for Quantum Annealing
title Coherent Coupled Qubits for Quantum Annealing
title_full Coherent Coupled Qubits for Quantum Annealing
title_fullStr Coherent Coupled Qubits for Quantum Annealing
title_full_unstemmed Coherent Coupled Qubits for Quantum Annealing
title_short Coherent Coupled Qubits for Quantum Annealing
title_sort coherent coupled qubits for quantum annealing
url http://hdl.handle.net/1721.1/110691
https://orcid.org/0000-0002-7069-1025
https://orcid.org/0000-0002-4674-2806
work_keys_str_mv AT weberstevenj coherentcoupledqubitsforquantumannealing
AT samachgabrielo coherentcoupledqubitsforquantumannealing
AT hoverdavidj coherentcoupledqubitsforquantumannealing
AT gustavssonsimon coherentcoupledqubitsforquantumannealing
AT kimdavidk coherentcoupledqubitsforquantumannealing
AT melvillealexanderj coherentcoupledqubitsforquantumannealing
AT rosenbergdanna coherentcoupledqubitsforquantumannealing
AT searsadamp coherentcoupledqubitsforquantumannealing
AT yanfei coherentcoupledqubitsforquantumannealing
AT yoderjonilynlongenecker coherentcoupledqubitsforquantumannealing
AT oliverwilliamd coherentcoupledqubitsforquantumannealing
AT kermanandrewj coherentcoupledqubitsforquantumannealing