Self-learning quantum Monte Carlo method in interacting fermion systems

The self-learning Monte Carlo method is a powerful general-purpose numerical method recently introduced to simulate many-body systems. In this work, we extend it to an interacting fermion quantum system in the framework of the widely used determinant quantum Monte Carlo. This method can generally r...

पूर्ण विवरण

ग्रंथसूची विवरण
मुख्य लेखकों: Xu, Xiao Yan, Qi, Yang, Liu, Junwei, Fu, Liang, Meng, Zi Yang
अन्य लेखक: Massachusetts Institute of Technology. Materials Processing Center
स्वरूप: लेख
भाषा:English
प्रकाशित: American Physical Society 2017
ऑनलाइन पहुंच:http://hdl.handle.net/1721.1/110782
https://orcid.org/0000-0001-8051-7349
https://orcid.org/0000-0002-8803-1017
विवरण
सारांश:The self-learning Monte Carlo method is a powerful general-purpose numerical method recently introduced to simulate many-body systems. In this work, we extend it to an interacting fermion quantum system in the framework of the widely used determinant quantum Monte Carlo. This method can generally reduce the computational complexity and moreover can greatly suppress the autocorrelation time near a critical point. This enables us to simulate an interacting fermion system on a 100×100 lattice even at the critical point and obtain critical exponents with high precision.