A Fully-Implantable Cochlear Implant SoC With Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation

A system-on-chip for an invisible, fully-implantable cochlear implant is presented. Implantable acoustic sensing is achieved by interfacing the SoC to a piezoelectric sensor that detects the sound-induced motion of the middle ear. Measurements from human cadaveric ears demonstrate that the sensor ca...

Full description

Bibliographic Details
Main Authors: Nakajima, Hideko Heidi, Stankovic, Konstantina M., Yip, Marcus, Jin, Rui, Chandrakasan, Anantha P
Other Authors: Massachusetts Institute of Technology. Microsystems Technology Laboratories
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers (IEEE) 2017
Online Access:http://hdl.handle.net/1721.1/110784
https://orcid.org/0000-0002-5977-2748
_version_ 1811081264615129088
author Nakajima, Hideko Heidi
Stankovic, Konstantina M.
Yip, Marcus
Jin, Rui
Chandrakasan, Anantha P
author2 Massachusetts Institute of Technology. Microsystems Technology Laboratories
author_facet Massachusetts Institute of Technology. Microsystems Technology Laboratories
Nakajima, Hideko Heidi
Stankovic, Konstantina M.
Yip, Marcus
Jin, Rui
Chandrakasan, Anantha P
author_sort Nakajima, Hideko Heidi
collection MIT
description A system-on-chip for an invisible, fully-implantable cochlear implant is presented. Implantable acoustic sensing is achieved by interfacing the SoC to a piezoelectric sensor that detects the sound-induced motion of the middle ear. Measurements from human cadaveric ears demonstrate that the sensor can detect sounds between 40 and 90 dB SPL over the speech bandwidth. A highly-reconfigurable digital sound processor enables system power scalability by reconfiguring the number of channels, and provides programmable features to enable a patient-specific fit. A mixed-signal arbitrary waveform neural stimulator enables energy-optimal stimulation pulses to be delivered to the auditory nerve. The energy-optimal waveform is validated with in-vivo measurements from four human subjects which show a 15% to 35% energy saving over the conventional rectangular waveform. Prototyped in a 0.18 μm high-voltage CMOS technology, the SoC in 8-channel mode consumes 572 μW of power including stimulation. The SoC integrates implantable acoustic sensing, sound processing, and neural stimulation on one chip to minimize the implant size, and proof-of-concept is demonstrated with measurements from a human cadaver ear.
first_indexed 2024-09-23T11:44:00Z
format Article
id mit-1721.1/110784
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T11:44:00Z
publishDate 2017
publisher Institute of Electrical and Electronics Engineers (IEEE)
record_format dspace
spelling mit-1721.1/1107842022-10-01T05:37:49Z A Fully-Implantable Cochlear Implant SoC With Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation Nakajima, Hideko Heidi Stankovic, Konstantina M. Yip, Marcus Jin, Rui Chandrakasan, Anantha P Massachusetts Institute of Technology. Microsystems Technology Laboratories Yip, Marcus Jin, Rui Chandrakasan, Anantha P A system-on-chip for an invisible, fully-implantable cochlear implant is presented. Implantable acoustic sensing is achieved by interfacing the SoC to a piezoelectric sensor that detects the sound-induced motion of the middle ear. Measurements from human cadaveric ears demonstrate that the sensor can detect sounds between 40 and 90 dB SPL over the speech bandwidth. A highly-reconfigurable digital sound processor enables system power scalability by reconfiguring the number of channels, and provides programmable features to enable a patient-specific fit. A mixed-signal arbitrary waveform neural stimulator enables energy-optimal stimulation pulses to be delivered to the auditory nerve. The energy-optimal waveform is validated with in-vivo measurements from four human subjects which show a 15% to 35% energy saving over the conventional rectangular waveform. Prototyped in a 0.18 μm high-voltage CMOS technology, the SoC in 8-channel mode consumes 572 μW of power including stimulation. The SoC integrates implantable acoustic sensing, sound processing, and neural stimulation on one chip to minimize the implant size, and proof-of-concept is demonstrated with measurements from a human cadaver ear. 2017-07-20T14:22:56Z 2017-07-20T14:22:56Z 2014-09 2014-07 Article http://purl.org/eprint/type/JournalArticle 0018-9200 1558-173X http://hdl.handle.net/1721.1/110784 Yip, Marcus; Jin, Rui; Nakajima, Hideko Heidi et al. “A Fully-Implantable Cochlear Implant SoC With Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation.” IEEE Journal of Solid-State Circuits 50, 1 (January 2015): 214–229 © 2015 Institute of Electrical and Electronics Engineers (IEEE) https://orcid.org/0000-0002-5977-2748 en_US http://dx.doi.org/10.1109/jssc.2014.2355822 IEEE Journal of Solid-State Circuits Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Institute of Electrical and Electronics Engineers (IEEE) PMC
spellingShingle Nakajima, Hideko Heidi
Stankovic, Konstantina M.
Yip, Marcus
Jin, Rui
Chandrakasan, Anantha P
A Fully-Implantable Cochlear Implant SoC With Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation
title A Fully-Implantable Cochlear Implant SoC With Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation
title_full A Fully-Implantable Cochlear Implant SoC With Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation
title_fullStr A Fully-Implantable Cochlear Implant SoC With Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation
title_full_unstemmed A Fully-Implantable Cochlear Implant SoC With Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation
title_short A Fully-Implantable Cochlear Implant SoC With Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation
title_sort fully implantable cochlear implant soc with piezoelectric middle ear sensor and arbitrary waveform neural stimulation
url http://hdl.handle.net/1721.1/110784
https://orcid.org/0000-0002-5977-2748
work_keys_str_mv AT nakajimahidekoheidi afullyimplantablecochlearimplantsocwithpiezoelectricmiddleearsensorandarbitrarywaveformneuralstimulation
AT stankovickonstantinam afullyimplantablecochlearimplantsocwithpiezoelectricmiddleearsensorandarbitrarywaveformneuralstimulation
AT yipmarcus afullyimplantablecochlearimplantsocwithpiezoelectricmiddleearsensorandarbitrarywaveformneuralstimulation
AT jinrui afullyimplantablecochlearimplantsocwithpiezoelectricmiddleearsensorandarbitrarywaveformneuralstimulation
AT chandrakasanananthap afullyimplantablecochlearimplantsocwithpiezoelectricmiddleearsensorandarbitrarywaveformneuralstimulation
AT nakajimahidekoheidi fullyimplantablecochlearimplantsocwithpiezoelectricmiddleearsensorandarbitrarywaveformneuralstimulation
AT stankovickonstantinam fullyimplantablecochlearimplantsocwithpiezoelectricmiddleearsensorandarbitrarywaveformneuralstimulation
AT yipmarcus fullyimplantablecochlearimplantsocwithpiezoelectricmiddleearsensorandarbitrarywaveformneuralstimulation
AT jinrui fullyimplantablecochlearimplantsocwithpiezoelectricmiddleearsensorandarbitrarywaveformneuralstimulation
AT chandrakasanananthap fullyimplantablecochlearimplantsocwithpiezoelectricmiddleearsensorandarbitrarywaveformneuralstimulation