Linear response methods for accurate covariance estimates from mean field variational bayes
Mean field variational Bayes (MFVB) is a popular posterior approximation method due to its fast runtime on large-scale data sets. However, a well known failing of MFVB is that it underestimates the uncertainty of model variables (sometimes severely) and provides no information about model variable c...
Päätekijät: | Giordano, Ryan, Jordan, Michael, Broderick, Tamara A |
---|---|
Muut tekijät: | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science |
Aineistotyyppi: | Artikkeli |
Kieli: | en_US |
Julkaistu: |
Neural Information Processing Systems Foundation
2017
|
Linkit: | http://hdl.handle.net/1721.1/110786 https://orcid.org/0000-0003-4704-5196 |
Samankaltaisia teoksia
-
Covariances, robustness, and variational Bayes
Tekijä: Broderick, Tamara A
Julkaistu: (2020) -
Bayes estimation of a finite population mean for the analysis of covariance model in the presence of non-response /
Tekijä: 295764 Sekkappan, R. M.
Julkaistu: (1982) -
Bayes Estimation for the Mean Matrix of the SSMESN Family of Matrix Variate Distributions
Tekijä: Amir Rezaei, et al.
Julkaistu: (2024-01-01) -
A New Class of Bayes Minimax Estimators of the Mean Matrix of a Matrix Variate Normal Distribution
Tekijä: Shokofeh Zinodiny, et al.
Julkaistu: (2024-04-01) -
A study of covariance matrix estimators for Markowitz mean-variance portfolio optimization
Tekijä: Luo, Yun
Julkaistu: (2015)