The value of temporal data for learning of influence networks: A characterization via Kullback-Leibler divergence
We infer local influence relations between networked entities from data on outcomes and assess the value of temporal data by formulating relevant binary hypothesis testing problems and characterizing the speed of learning of the correct hypothesis via the Kullback-Leibler divergence, under three dif...
Principais autores: | Zoumpoulis, Spyros I., Dahleh, Munther A, Tsitsiklis, John N |
---|---|
Outros Autores: | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science |
Formato: | Artigo |
Idioma: | en_US |
Publicado em: |
Institute of Electrical and Electronics Engineers (IEEE)
2017
|
Acesso em linha: | http://hdl.handle.net/1721.1/110806 https://orcid.org/0000-0002-1470-2148 https://orcid.org/0000-0003-2658-8239 |
Registros relacionados
-
Exact Expressions for Kullback–Leibler Divergence for Univariate Distributions
por: Victor Nawa, et al.
Publicado em: (2024-11-01) -
A Maximum Value for the Kullback–Leibler Divergence between Quantized Distributions
por: Vincenzo Bonnici
Publicado em: (2024-09-01) -
Minimal Kullback-Leibler divergence for constrained Lévy-Itô processes
por: Jaimungal, S, et al.
Publicado em: (2024) -
Local inconsistency detection using the Kullback–Leibler divergence measure
por: Loukia M. Spineli
Publicado em: (2024-10-01) -
Damage Identification by the Kullback-Leibler Divergence and Hybrid Damage Index
por: Shaohua Tian, et al.
Publicado em: (2014-01-01)