The value of temporal data for learning of influence networks: A characterization via Kullback-Leibler divergence

We infer local influence relations between networked entities from data on outcomes and assess the value of temporal data by formulating relevant binary hypothesis testing problems and characterizing the speed of learning of the correct hypothesis via the Kullback-Leibler divergence, under three dif...

ver descrição completa

Detalhes bibliográficos
Principais autores: Zoumpoulis, Spyros I., Dahleh, Munther A, Tsitsiklis, John N
Outros Autores: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Formato: Artigo
Idioma:en_US
Publicado em: Institute of Electrical and Electronics Engineers (IEEE) 2017
Acesso em linha:http://hdl.handle.net/1721.1/110806
https://orcid.org/0000-0002-1470-2148
https://orcid.org/0000-0003-2658-8239

Registros relacionados