Molecular Dynamics Simulation of Surface Nucleation during Growth of an Alkane Crystal
Crystal growth from the melt of n-pentacontane (C50) was studied by molecular dynamics simulation. Quenching below the melting temperature gives rise to propagation of the crystal growth front into the C50 melt from a crystalline polyethylene surface. By tracking the location of the crystal–melt int...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Chemical Society (ACS)
2017
|
Online Access: | http://hdl.handle.net/1721.1/110967 https://orcid.org/0000-0001-9074-844X https://orcid.org/0000-0001-8137-1732 |
Summary: | Crystal growth from the melt of n-pentacontane (C50) was studied by molecular dynamics simulation. Quenching below the melting temperature gives rise to propagation of the crystal growth front into the C50 melt from a crystalline polyethylene surface. By tracking the location of the crystal–melt interface, crystal growth rates between 0.02 and 0.05 m/s were observed, for quench depths of 10–70 K below the melting point. These growth rates compare favorably with those from a previous study by Waheed et al. [ Polymer 2005, 46, 8689−8702]. Next, surface nucleation was identified with the formation of two-dimensional clusters of crystalline sites within layers parallel to the propagating growth front. Critical nucleus sizes, waiting times, and rates for surface nucleation were estimated by a mean first passage time analysis. A surface nucleation rate of ∼0.05 nm⁻² ns⁻¹ was observed, and it was nearly temperature-independent. Postcritical “spreading” of the surface nuclei to form a completely crystallized layer slowed with deeper supercooling. |
---|