Designing a tokamak fusion reactor—How does plasma physics fit in?

This paper attempts to bridge the gap between tokamak reactor design and plasma physics. The analysis demonstrates that the overall design of a tokamak fusion reactor is determined almost entirely by the constraints imposed by nuclear physics and fusion engineering. Virtually, no plasma physics is r...

Full description

Bibliographic Details
Main Authors: Mangiarotti, Franco Julio, Minervini, Joseph V, Freidberg, Jeffrey P.
Other Authors: Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Format: Article
Language:en_US
Published: American Institute of Physics (AIP) 2017
Online Access:http://hdl.handle.net/1721.1/111207
https://orcid.org/0000-0002-7132-5916
https://orcid.org/0000-0003-0594-3350
Description
Summary:This paper attempts to bridge the gap between tokamak reactor design and plasma physics. The analysis demonstrates that the overall design of a tokamak fusion reactor is determined almost entirely by the constraints imposed by nuclear physics and fusion engineering. Virtually, no plasma physics is required to determine the main design parameters of a reactor: a, R[subscript 0], B[subscript 0], T[subscript i], T[subscript e], p, n, τ[subscript E], I. The one exception is the value of the toroidal current I, which depends upon a combination of engineering and plasma physics. This exception, however, ultimately has a major impact on the feasibility of an attractive tokamak reactor. The analysis shows that the engineering/nuclear physics design makes demands on the plasma physics that must be satisfied in order to generate power. These demands are substituted into the well-known operational constraints arising in tokamak physics: the Troyon limit, Greenwald limit, kink stability limit, and bootstrap fraction limit. Unfortunately, a tokamak reactor designed on the basis of standard engineering and nuclear physics constraints does not scale to a reactor. Too much current is required to achieve the necessary confinement time for ignition. The combination of achievable bootstrap current plus current drive is not sufficient to generate the current demanded by the engineering design. Several possible solutions are discussed in detail involving advances in plasma physics or engineering. The main contribution of the present work is to demonstrate that the basic reactor design and its plasma physics consequences can be determined simply and analytically. The analysis thus provides a crisp, compact, logical framework that will hopefully lead to improved physical intuition for connecting plasma physic to tokamak reactor design.