High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array
Intercellular communication via chemical signaling proceeds with both spatial and temporal components, but analytical tools, such as microfabricated electrodes, have been limited to just a few probes per cell. In this work, we use a nonphotobleaching fluorescent nanosensor array based on single-wall...
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
National Academy of Sciences (U.S.)
2017
|
Online Access: | http://hdl.handle.net/1721.1/111216 https://orcid.org/0000-0002-6349-0719 https://orcid.org/0000-0002-0419-3351 https://orcid.org/0000-0003-2944-808X |
_version_ | 1811095447057465344 |
---|---|
author | Kruss, Sebastian Salem, Daniel Parker Lima, Barbara M. Vander Ende, Emma R Boyden, Edward Strano, Michael S. |
author2 | Massachusetts Institute of Technology. Department of Chemical Engineering |
author_facet | Massachusetts Institute of Technology. Department of Chemical Engineering Kruss, Sebastian Salem, Daniel Parker Lima, Barbara M. Vander Ende, Emma R Boyden, Edward Strano, Michael S. |
author_sort | Kruss, Sebastian |
collection | MIT |
description | Intercellular communication via chemical signaling proceeds with both spatial and temporal components, but analytical tools, such as microfabricated electrodes, have been limited to just a few probes per cell. In this work, we use a nonphotobleaching fluorescent nanosensor array based on single-walled carbon nanotubes (SWCNTs) rendered selective to dopamine to study its release from PC12 neuroprogenitor cells at a resolution exceeding 20,000 sensors per cell. This allows the spatial and temporal dynamics of dopamine release, following K⁺ stimulation, to be measured at exceedingly high resolution. We observe localized, unlabeled release sites of dopamine spanning 100 ms to seconds that correlate with protrusions but not predominately the positive curvature associated with the tips of cellular protrusions as intuitively expected. The results illustrate how directionality of chemical signaling is shaped by membrane morphology, and highlight the advantages of nanosensor arrays that can provide high spatial and temporal resolution of chemical signaling. |
first_indexed | 2024-09-23T16:16:55Z |
format | Article |
id | mit-1721.1/111216 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T16:16:55Z |
publishDate | 2017 |
publisher | National Academy of Sciences (U.S.) |
record_format | dspace |
spelling | mit-1721.1/1112162022-10-02T07:32:05Z High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array Kruss, Sebastian Salem, Daniel Parker Lima, Barbara M. Vander Ende, Emma R Boyden, Edward Strano, Michael S. Massachusetts Institute of Technology. Department of Chemical Engineering Massachusetts Institute of Technology. Media Laboratory McGovern Institute for Brain Research at MIT Kruss, Sebastian Salem, Daniel Parker Lima, Barbara M. Vander Ende, Emma R Boyden, Edward Strano, Michael S. Intercellular communication via chemical signaling proceeds with both spatial and temporal components, but analytical tools, such as microfabricated electrodes, have been limited to just a few probes per cell. In this work, we use a nonphotobleaching fluorescent nanosensor array based on single-walled carbon nanotubes (SWCNTs) rendered selective to dopamine to study its release from PC12 neuroprogenitor cells at a resolution exceeding 20,000 sensors per cell. This allows the spatial and temporal dynamics of dopamine release, following K⁺ stimulation, to be measured at exceedingly high resolution. We observe localized, unlabeled release sites of dopamine spanning 100 ms to seconds that correlate with protrusions but not predominately the positive curvature associated with the tips of cellular protrusions as intuitively expected. The results illustrate how directionality of chemical signaling is shaped by membrane morphology, and highlight the advantages of nanosensor arrays that can provide high spatial and temporal resolution of chemical signaling. National Science Foundation (U.S.) (Grant 2388357) 2017-09-14T19:14:54Z 2017-09-14T19:14:54Z 2017-02 2016-08 Article http://purl.org/eprint/type/JournalArticle 0027-8424 1091-6490 http://hdl.handle.net/1721.1/111216 Kruss, Sebastian et al. “High-Resolution Imaging of Cellular Dopamine Efflux Using a Fluorescent Nanosensor Array.” Proceedings of the National Academy of Sciences 114, 8 (February 2017): 1789–1794 © 2017 National Academy of Sciences https://orcid.org/0000-0002-6349-0719 https://orcid.org/0000-0002-0419-3351 https://orcid.org/0000-0003-2944-808X en_US http://dx.doi.org/10.1073/pnas.1613541114 Proceedings of the National Academy of Sciences Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf National Academy of Sciences (U.S.) PNAS |
spellingShingle | Kruss, Sebastian Salem, Daniel Parker Lima, Barbara M. Vander Ende, Emma R Boyden, Edward Strano, Michael S. High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array |
title | High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array |
title_full | High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array |
title_fullStr | High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array |
title_full_unstemmed | High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array |
title_short | High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array |
title_sort | high resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array |
url | http://hdl.handle.net/1721.1/111216 https://orcid.org/0000-0002-6349-0719 https://orcid.org/0000-0002-0419-3351 https://orcid.org/0000-0003-2944-808X |
work_keys_str_mv | AT krusssebastian highresolutionimagingofcellulardopamineeffluxusingafluorescentnanosensorarray AT salemdanielparker highresolutionimagingofcellulardopamineeffluxusingafluorescentnanosensorarray AT limabarbaram highresolutionimagingofcellulardopamineeffluxusingafluorescentnanosensorarray AT vanderendeemmar highresolutionimagingofcellulardopamineeffluxusingafluorescentnanosensorarray AT boydenedward highresolutionimagingofcellulardopamineeffluxusingafluorescentnanosensorarray AT stranomichaels highresolutionimagingofcellulardopamineeffluxusingafluorescentnanosensorarray |