Growth of InGaAs-channel transistor layers on large-scale Si wafers for HeteroIntegration with Si CMOS

We report on the growth of In 0.30 Ga 0.70 As channel high-electron mobility transistor (HEMT) epi-layers on a 200 mm silicon wafer by metal organic chemical vapor deposition (MOCVD). The device epi-layers were grown on a silicon substrate by using a ∼ 3 μm thick buffer comprising a Ge layer, a GaAs...

Full description

Bibliographic Details
Main Authors: Nguyen, X.S., Yadav, S., Lee, K.H., Kohen, D., Kumar, A., Made, R.I., Gong, X., Lee, K.E., Tan, C.S., Yoon, S.F., Chua, S.J., Fitzgerald, Eugene A
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering
Format: Article
Published: CS Mantech 2017
Online Access:http://hdl.handle.net/1721.1/111840
https://orcid.org/0000-0002-1891-1959
_version_ 1811080405359525888
author Nguyen, X.S.
Yadav, S.
Lee, K.H.
Kohen, D.
Kumar, A.
Made, R.I.
Gong, X.
Lee, K.E.
Tan, C.S.
Yoon, S.F.
Chua, S.J.
Fitzgerald, Eugene A
author2 Massachusetts Institute of Technology. Department of Materials Science and Engineering
author_facet Massachusetts Institute of Technology. Department of Materials Science and Engineering
Nguyen, X.S.
Yadav, S.
Lee, K.H.
Kohen, D.
Kumar, A.
Made, R.I.
Gong, X.
Lee, K.E.
Tan, C.S.
Yoon, S.F.
Chua, S.J.
Fitzgerald, Eugene A
author_sort Nguyen, X.S.
collection MIT
description We report on the growth of In 0.30 Ga 0.70 As channel high-electron mobility transistor (HEMT) epi-layers on a 200 mm silicon wafer by metal organic chemical vapor deposition (MOCVD). The device epi-layers were grown on a silicon substrate by using a ∼ 3 μm thick buffer comprising a Ge layer, a GaAs layer and an InAlAs compositionally graded, strain relaxation layer. The achieved epitaxy has a threading dislocation density of (1 - 2) × 10[superscript 7] cm[superscript -2] and a root mean square surface roughness of 6-7 nm. The device active layers include a delta-doped InAlAs bottom barrier, a 15 nm thick InGaAs channel, a 15 nm InGaP top barrier layer and a heavily doped InGaAs contact layer. Long channel MOS-HEMT devices (LG ∼ 20 μm), were fabricated achieving a peak effective electron mobility of ∼ 3700 cm[superscript 2]/V·s.
first_indexed 2024-09-23T11:31:08Z
format Article
id mit-1721.1/111840
institution Massachusetts Institute of Technology
last_indexed 2024-09-23T11:31:08Z
publishDate 2017
publisher CS Mantech
record_format dspace
spelling mit-1721.1/1118402022-09-27T20:05:12Z Growth of InGaAs-channel transistor layers on large-scale Si wafers for HeteroIntegration with Si CMOS Nguyen, X.S. Yadav, S. Lee, K.H. Kohen, D. Kumar, A. Made, R.I. Gong, X. Lee, K.E. Tan, C.S. Yoon, S.F. Chua, S.J. Fitzgerald, Eugene A Massachusetts Institute of Technology. Department of Materials Science and Engineering Fitzgerald, Eugene A We report on the growth of In 0.30 Ga 0.70 As channel high-electron mobility transistor (HEMT) epi-layers on a 200 mm silicon wafer by metal organic chemical vapor deposition (MOCVD). The device epi-layers were grown on a silicon substrate by using a ∼ 3 μm thick buffer comprising a Ge layer, a GaAs layer and an InAlAs compositionally graded, strain relaxation layer. The achieved epitaxy has a threading dislocation density of (1 - 2) × 10[superscript 7] cm[superscript -2] and a root mean square surface roughness of 6-7 nm. The device active layers include a delta-doped InAlAs bottom barrier, a 15 nm thick InGaAs channel, a 15 nm InGaP top barrier layer and a heavily doped InGaAs contact layer. Long channel MOS-HEMT devices (LG ∼ 20 μm), were fabricated achieving a peak effective electron mobility of ∼ 3700 cm[superscript 2]/V·s. 2017-10-11T13:31:01Z 2017-10-11T13:31:01Z 2017-05 2017-10-06T13:33:36Z Article http://purl.org/eprint/type/ConferencePaper http://hdl.handle.net/1721.1/111840 Nguyen, X.S. et al. "Growth of InGaAs-channel transistor layers on large-scale Si wafers for HeteroIntegration with Si CMOS." 2017 International Conference on Compound Semiconductor Manufacturing Technology(2017 CS MANTECH Conference), May 22-25 2017, Indian Wells, California, USA, CS Mantech, May 2017 https://orcid.org/0000-0002-1891-1959 http://csmantech2017.conferencespot.org/64646gmi-1.3606545/t008-1.3607215/f008-1.3607216/0889-000037-1.3607220/ap014-1.3607221 2017 International Conference on Compound Semiconductor Manufacturing Technology(2017 CS MANTECH Conference) Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf CS Mantech Other repository
spellingShingle Nguyen, X.S.
Yadav, S.
Lee, K.H.
Kohen, D.
Kumar, A.
Made, R.I.
Gong, X.
Lee, K.E.
Tan, C.S.
Yoon, S.F.
Chua, S.J.
Fitzgerald, Eugene A
Growth of InGaAs-channel transistor layers on large-scale Si wafers for HeteroIntegration with Si CMOS
title Growth of InGaAs-channel transistor layers on large-scale Si wafers for HeteroIntegration with Si CMOS
title_full Growth of InGaAs-channel transistor layers on large-scale Si wafers for HeteroIntegration with Si CMOS
title_fullStr Growth of InGaAs-channel transistor layers on large-scale Si wafers for HeteroIntegration with Si CMOS
title_full_unstemmed Growth of InGaAs-channel transistor layers on large-scale Si wafers for HeteroIntegration with Si CMOS
title_short Growth of InGaAs-channel transistor layers on large-scale Si wafers for HeteroIntegration with Si CMOS
title_sort growth of ingaas channel transistor layers on large scale si wafers for heterointegration with si cmos
url http://hdl.handle.net/1721.1/111840
https://orcid.org/0000-0002-1891-1959
work_keys_str_mv AT nguyenxs growthofingaaschanneltransistorlayersonlargescalesiwafersforheterointegrationwithsicmos
AT yadavs growthofingaaschanneltransistorlayersonlargescalesiwafersforheterointegrationwithsicmos
AT leekh growthofingaaschanneltransistorlayersonlargescalesiwafersforheterointegrationwithsicmos
AT kohend growthofingaaschanneltransistorlayersonlargescalesiwafersforheterointegrationwithsicmos
AT kumara growthofingaaschanneltransistorlayersonlargescalesiwafersforheterointegrationwithsicmos
AT maderi growthofingaaschanneltransistorlayersonlargescalesiwafersforheterointegrationwithsicmos
AT gongx growthofingaaschanneltransistorlayersonlargescalesiwafersforheterointegrationwithsicmos
AT leeke growthofingaaschanneltransistorlayersonlargescalesiwafersforheterointegrationwithsicmos
AT tancs growthofingaaschanneltransistorlayersonlargescalesiwafersforheterointegrationwithsicmos
AT yoonsf growthofingaaschanneltransistorlayersonlargescalesiwafersforheterointegrationwithsicmos
AT chuasj growthofingaaschanneltransistorlayersonlargescalesiwafersforheterointegrationwithsicmos
AT fitzgeraldeugenea growthofingaaschanneltransistorlayersonlargescalesiwafersforheterointegrationwithsicmos