Thermal Energy Harvesting for Self-Powered Smart Home Sensors
This paper investigates the use of thermoelectric energy harvesting for embedded, self-powered sensor nodes in smart homes. In particular, one such application is self-powered pressure sensing in vacuum insulation panels for buildings. The panels greatly improve heating and...
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2017
|
Online Access: | http://hdl.handle.net/1721.1/112117 https://orcid.org/0000-0002-7820-1625 https://orcid.org/0000-0002-5977-2748 |
Summary: | This paper investigates the use of thermoelectric energy harvesting for embedded, self-powered sensor nodes in smart homes. In particular, one such application is self-powered pressure sensing in vacuum insulation panels for buildings. The panels greatly improve heating and cooling energy use, and the thermal difference developed across them could be used to drive a wireless sensor to monitor their pressure level. We first created a model for the available power using historical weather data. Then, we measured the thermoelectric generator’s actual power output by combining the generator with a vacuum insulation panel and mounting it inside a window for experiments. Finally, we determine the feasibility of using the established thermal gradient to power a sensor node. We show that thermoelectric energy harvesting could enable a new class of embedded, maintenance-free, self-powered sensors for smart homes. |
---|