Flow-based fabrication: An integrated computational workflow for design and digital additive manufacturing of multifunctional heterogeneously structured objects
Structural hierarchy and material organization in design are traditionally achieved by combining discrete homogeneous parts into functional assemblies where the shape or surface is the determining factor in achieving function. In contrast, biological structures express higher levels of functionality...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Elsevier
2017
|
Online Access: | http://hdl.handle.net/1721.1/112152 https://orcid.org/0000-0002-9249-6095 https://orcid.org/0000-0001-6296-2617 https://orcid.org/0000-0001-9222-4447 |
_version_ | 1826193567006064640 |
---|---|
author | Duro-Royo, Jorge Mogas-Soldevila, Laia Oxman, Neri |
author2 | Massachusetts Institute of Technology. Media Laboratory |
author_facet | Massachusetts Institute of Technology. Media Laboratory Duro-Royo, Jorge Mogas-Soldevila, Laia Oxman, Neri |
author_sort | Duro-Royo, Jorge |
collection | MIT |
description | Structural hierarchy and material organization in design are traditionally achieved by combining discrete homogeneous parts into functional assemblies where the shape or surface is the determining factor in achieving function. In contrast, biological structures express higher levels of functionality on a finer scale through volumetric cellular constructs that are heterogeneous and complex. Despite recent advancements in additive manufacturing of functionally graded materials, the limitations associated with computational design and digital fabrication of heterogeneous materials and structures frame and limit further progress. Conventional computer-aided design tools typically contain geometric and topologic data of virtual constructs, but lack robust means to integrate material composition properties within virtual models. We present a seamless computational workflow for the design and direct digital fabrication of multi-material and multi-scale structured objects. The workflow encodes for and integrates domain-specific meta-data relating to local, regional and global feature resolution of heterogeneous material organizations. We focus on water-based materials and demonstrate our approach by additively manufacturing diverse constructs associating shape-informing variable flow rates and material properties to mesh-free geometric primitives. The proposed workflow enables virtual-to-physical control of constructs where structural, mechanical and optical gradients are achieved through a seamless design-to-fabrication tool with localized control. An enabling technology combining a robotic arm and a multi-syringe multi nozzle deposition system is presented. Proposed methodology is implemented and full-scale demonstrations are included. |
first_indexed | 2024-09-23T09:41:09Z |
format | Article |
id | mit-1721.1/112152 |
institution | Massachusetts Institute of Technology |
last_indexed | 2024-09-23T09:41:09Z |
publishDate | 2017 |
publisher | Elsevier |
record_format | dspace |
spelling | mit-1721.1/1121522022-09-26T13:05:47Z Flow-based fabrication: An integrated computational workflow for design and digital additive manufacturing of multifunctional heterogeneously structured objects Duro-Royo, Jorge Mogas-Soldevila, Laia Oxman, Neri Massachusetts Institute of Technology. Media Laboratory Program in Media Arts and Sciences (Massachusetts Institute of Technology) Oxman, Neri Duro-Royo, Jorge Mogas-Soldevila, Laia Oxman, Neri Structural hierarchy and material organization in design are traditionally achieved by combining discrete homogeneous parts into functional assemblies where the shape or surface is the determining factor in achieving function. In contrast, biological structures express higher levels of functionality on a finer scale through volumetric cellular constructs that are heterogeneous and complex. Despite recent advancements in additive manufacturing of functionally graded materials, the limitations associated with computational design and digital fabrication of heterogeneous materials and structures frame and limit further progress. Conventional computer-aided design tools typically contain geometric and topologic data of virtual constructs, but lack robust means to integrate material composition properties within virtual models. We present a seamless computational workflow for the design and direct digital fabrication of multi-material and multi-scale structured objects. The workflow encodes for and integrates domain-specific meta-data relating to local, regional and global feature resolution of heterogeneous material organizations. We focus on water-based materials and demonstrate our approach by additively manufacturing diverse constructs associating shape-informing variable flow rates and material properties to mesh-free geometric primitives. The proposed workflow enables virtual-to-physical control of constructs where structural, mechanical and optical gradients are achieved through a seamless design-to-fabrication tool with localized control. An enabling technology combining a robotic arm and a multi-syringe multi nozzle deposition system is presented. Proposed methodology is implemented and full-scale demonstrations are included. 2017-11-08T21:27:38Z 2017-11-08T21:27:38Z 2015-06 2017-09-26T13:23:04Z Article http://purl.org/eprint/type/JournalArticle 0010-4485 http://hdl.handle.net/1721.1/112152 Duro-Royo, Jorge et al. “Flow-Based Fabrication: An Integrated Computational Workflow for Design and Digital Additive Manufacturing of Multifunctional Heterogeneously Structured Objects.” Computer-Aided Design 69 (December 2015): 143–154 © 2015 Elsevier https://orcid.org/0000-0002-9249-6095 https://orcid.org/0000-0001-6296-2617 https://orcid.org/0000-0001-9222-4447 http://dx.doi.org/10.1016/J.CAD.2015.05.005 Computer-Aided Design Creative Commons Attribution-Noncommercial-NoDerivatives http://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf Elsevier Oxman |
spellingShingle | Duro-Royo, Jorge Mogas-Soldevila, Laia Oxman, Neri Flow-based fabrication: An integrated computational workflow for design and digital additive manufacturing of multifunctional heterogeneously structured objects |
title | Flow-based fabrication: An integrated computational workflow for design and digital additive manufacturing of multifunctional heterogeneously structured objects |
title_full | Flow-based fabrication: An integrated computational workflow for design and digital additive manufacturing of multifunctional heterogeneously structured objects |
title_fullStr | Flow-based fabrication: An integrated computational workflow for design and digital additive manufacturing of multifunctional heterogeneously structured objects |
title_full_unstemmed | Flow-based fabrication: An integrated computational workflow for design and digital additive manufacturing of multifunctional heterogeneously structured objects |
title_short | Flow-based fabrication: An integrated computational workflow for design and digital additive manufacturing of multifunctional heterogeneously structured objects |
title_sort | flow based fabrication an integrated computational workflow for design and digital additive manufacturing of multifunctional heterogeneously structured objects |
url | http://hdl.handle.net/1721.1/112152 https://orcid.org/0000-0002-9249-6095 https://orcid.org/0000-0001-6296-2617 https://orcid.org/0000-0001-9222-4447 |
work_keys_str_mv | AT duroroyojorge flowbasedfabricationanintegratedcomputationalworkflowfordesignanddigitaladditivemanufacturingofmultifunctionalheterogeneouslystructuredobjects AT mogassoldevilalaia flowbasedfabricationanintegratedcomputationalworkflowfordesignanddigitaladditivemanufacturingofmultifunctionalheterogeneouslystructuredobjects AT oxmanneri flowbasedfabricationanintegratedcomputationalworkflowfordesignanddigitaladditivemanufacturingofmultifunctionalheterogeneouslystructuredobjects |