Growth and splitting of neural sequences in songbird vocal development

Neural sequences are a fundamental feature of brain dynamics underlying diverse behaviours, but the mechanisms by which they develop during learning remain unknown. Songbirds learn vocalizations composed of syllables; in adult birds, each syllable is produced by a different sequence of action potent...

Бүрэн тодорхойлолт

Номзүйн дэлгэрэнгүй
Үндсэн зохиолчид: Payne, Hannah L., Okubo, Tatsuo, Mackevicius, Emily Lambert, Lynch, Galen Forest, Fee, Michale Sean
Бусад зохиолчид: McGovern Institute for Brain Research at MIT
Формат: Өгүүллэг
Хэвлэсэн: Nature Publishing Group 2017
Онлайн хандалт:http://hdl.handle.net/1721.1/112257
https://orcid.org/0000-0001-7139-0956
https://orcid.org/0000-0001-6593-4398
https://orcid.org/0000-0003-4307-0247
https://orcid.org/0000-0001-7539-1745
Тодорхойлолт
Тойм:Neural sequences are a fundamental feature of brain dynamics underlying diverse behaviours, but the mechanisms by which they develop during learning remain unknown. Songbirds learn vocalizations composed of syllables; in adult birds, each syllable is produced by a different sequence of action potential bursts in the premotor cortical area HVC. Here we carried out recordings of large populations of HVC neurons in singing juvenile birds throughout learning to examine the emergence of neural sequences. Early in vocal development, HVC neurons begin producing rhythmic bursts, temporally locked to a prototype syllable. Different neurons are active at different latencies relative to syllable onset to form a continuous sequence. Through development, as new syllables emerge from the prototype syllable, initially highly overlapping burst sequences become increasingly distinct. We propose a mechanistic model in which multiple neural sequences can emerge from the growth and splitting of a commo n precursor sequence.