Eccentricity dependent deep neural networks: Modeling invariance in human vision

Humans can recognize objects in a way that is invariant to scale, translation, and clutter. We use invariance theory as a conceptual basis, to computationally model this phenomenon. This theory discusses the role of eccentricity in human visual processing, and is a generalization of feedforward conv...

Full description

Bibliographic Details
Main Authors: Chen, Francis X., Roig Noguera, Gemma, Isik, Leyla, Boix Bosch, Xavier, Poggio, Tomaso A
Other Authors: Center for Brains, Minds, and Machines
Format: Article
Published: Association for the Advancement of Artificial Intelligence 2017
Online Access:http://hdl.handle.net/1721.1/112279
https://orcid.org/0000-0002-1909-257X
https://orcid.org/0000-0002-7470-0179
https://orcid.org/0000-0002-9255-0151
https://orcid.org/0000-0002-3944-0455
_version_ 1811080221880745984
author Chen, Francis X.
Roig Noguera, Gemma
Isik, Leyla
Boix Bosch, Xavier
Poggio, Tomaso A
author2 Center for Brains, Minds, and Machines
author_facet Center for Brains, Minds, and Machines
Chen, Francis X.
Roig Noguera, Gemma
Isik, Leyla
Boix Bosch, Xavier
Poggio, Tomaso A
author_sort Chen, Francis X.
collection MIT
description Humans can recognize objects in a way that is invariant to scale, translation, and clutter. We use invariance theory as a conceptual basis, to computationally model this phenomenon. This theory discusses the role of eccentricity in human visual processing, and is a generalization of feedforward convolutional neural networks (CNNs). Our model explains some key psychophysical observations relating to invariant perception, while maintaining important similarities with biological neural architectures. To our knowledge, this work is the first to unify explanations of all three types of invariance, all while leveraging the power and neurological grounding of CNNs.
first_indexed 2024-09-23T11:27:46Z
format Article
id mit-1721.1/112279
institution Massachusetts Institute of Technology
last_indexed 2024-09-23T11:27:46Z
publishDate 2017
publisher Association for the Advancement of Artificial Intelligence
record_format dspace
spelling mit-1721.1/1122792022-10-01T03:47:42Z Eccentricity dependent deep neural networks: Modeling invariance in human vision Chen, Francis X. Roig Noguera, Gemma Isik, Leyla Boix Bosch, Xavier Poggio, Tomaso A Center for Brains, Minds, and Machines Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science Chen, Francis X. Roig Noguera, Gemma Isik, Leyla Boix Bosch, Xavier Poggio, Tomaso A Humans can recognize objects in a way that is invariant to scale, translation, and clutter. We use invariance theory as a conceptual basis, to computationally model this phenomenon. This theory discusses the role of eccentricity in human visual processing, and is a generalization of feedforward convolutional neural networks (CNNs). Our model explains some key psychophysical observations relating to invariant perception, while maintaining important similarities with biological neural architectures. To our knowledge, this work is the first to unify explanations of all three types of invariance, all while leveraging the power and neurological grounding of CNNs. 2017-11-22T16:03:27Z 2017-11-22T16:03:27Z 2017-03 2017-11-16T19:35:26Z Article http://purl.org/eprint/type/ConferencePaper http://hdl.handle.net/1721.1/112279 Chen,Francis X. et al. "Eccentricity dependent deep neural networks: Modeling invariance in human vision." 2017 AAAI Spring Symposium Series, Science of Intelligence: Computational Principles of Natural and Artificial Intelligence, March 27-29 2017, Stanford, California, Association for the Advancement of Artificial Intelligence, March 2017 © 2017 Association for the Advancement of Artificial Intelligence https://orcid.org/0000-0002-1909-257X https://orcid.org/0000-0002-7470-0179 https://orcid.org/0000-0002-9255-0151 https://orcid.org/0000-0002-3944-0455 https://www.aaai.org/ocs/index.php/SSS/SSS17/paper/viewPaper/15360 2017 AAAI Spring Symposium Series, Science of Intelligence: Computational Principles of Natural and Artificial Intelligence Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Association for the Advancement of Artificial Intelligence MIT Web Domain
spellingShingle Chen, Francis X.
Roig Noguera, Gemma
Isik, Leyla
Boix Bosch, Xavier
Poggio, Tomaso A
Eccentricity dependent deep neural networks: Modeling invariance in human vision
title Eccentricity dependent deep neural networks: Modeling invariance in human vision
title_full Eccentricity dependent deep neural networks: Modeling invariance in human vision
title_fullStr Eccentricity dependent deep neural networks: Modeling invariance in human vision
title_full_unstemmed Eccentricity dependent deep neural networks: Modeling invariance in human vision
title_short Eccentricity dependent deep neural networks: Modeling invariance in human vision
title_sort eccentricity dependent deep neural networks modeling invariance in human vision
url http://hdl.handle.net/1721.1/112279
https://orcid.org/0000-0002-1909-257X
https://orcid.org/0000-0002-7470-0179
https://orcid.org/0000-0002-9255-0151
https://orcid.org/0000-0002-3944-0455
work_keys_str_mv AT chenfrancisx eccentricitydependentdeepneuralnetworksmodelinginvarianceinhumanvision
AT roignogueragemma eccentricitydependentdeepneuralnetworksmodelinginvarianceinhumanvision
AT isikleyla eccentricitydependentdeepneuralnetworksmodelinginvarianceinhumanvision
AT boixboschxavier eccentricitydependentdeepneuralnetworksmodelinginvarianceinhumanvision
AT poggiotomasoa eccentricitydependentdeepneuralnetworksmodelinginvarianceinhumanvision