Millimeter Wave Communications

Millimeter wave (mmWave) technologies promise to revolutionize wireless networks by enabling multi-gigabit data rates. However, they suffer from high attenuation, and hence have to use highly directional antennas to focus their power on the receiver. Existing radios have to scan the space to find th...

Full description

Bibliographic Details
Main Authors: Hassanieh, Haitham, Salehi-Abari, Omid, Rodriguez, Michael, Katabi, Dina
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Format: Article
Language:en_US
Published: Association for Computing Machinery (ACM) 2017
Online Access:http://hdl.handle.net/1721.1/112351
https://orcid.org/0000-0001-8218-6301
https://orcid.org/0000-0002-4206-6783
https://orcid.org/0000-0003-4854-4157
Description
Summary:Millimeter wave (mmWave) technologies promise to revolutionize wireless networks by enabling multi-gigabit data rates. However, they suffer from high attenuation, and hence have to use highly directional antennas to focus their power on the receiver. Existing radios have to scan the space to find the best alignment between the transmitter’s and receiver’s beams, a process that takes up to a few seconds. This delay is problematic in a network setting where the base station needs to quickly switch between users and accommodate mobile clients. We present Agile-Link, the first mmWave beam steering system that is demonstrated to find the correct beam alignment without scanning the space. Instead of scanning, Agile- Link hashes the beam directions using a few carefully chosen hash functions. It then identifies the correct alignment by tracking how the energy changes across different hash functions. Our results show that Agile-Link reduces beam steering delay by orders of magnitude.