Microscopic reversal magnetization mechanisms in CoCrPt thin films with perpendicular magnetic anisotropy: Fractal structure versus labyrinth stripe domains
The magnetization reversal of CoCrPt thin films has been examined as a function of thickness using magneto-optical Kerr effect (MOKE) microscopy and first-order reversal curves (FORC) techniques. MOKE images show differentiated magnetization reversal regimes for different film thicknesses: while the...
Үндсэн зохиолчид: | , , , , , , , , |
---|---|
Бусад зохиолчид: | |
Формат: | Өгүүллэг |
Хэл сонгох: | English |
Хэвлэсэн: |
American Physical Society
2017
|
Онлайн хандалт: | http://hdl.handle.net/1721.1/112616 https://orcid.org/0000-0003-2262-1249 |
Тойм: | The magnetization reversal of CoCrPt thin films has been examined as a function of thickness using magneto-optical Kerr effect (MOKE) microscopy and first-order reversal curves (FORC) techniques. MOKE images show differentiated magnetization reversal regimes for different film thicknesses: while the magnetic domains in 10-nm-thick CoCrPt film resemble a fractal structure, a labyrinth stripe domain configuration is observed for 20-nm-thick films. Although FORC distributions for both cases show two main features related to irreversible processes (propagation and annihilation fields) separated by a mostly flat region, this method can nonetheless distinguish which magnetization reversal process is active according to the horizontal profile of the first FORC peak, or propagation field. A single-peak FORC profile corresponds to the fractal magnetization reversal, whereas a flat-peak FORC profile corresponds to the labyrinth magnetization reversal. |
---|