Microscopic reversal magnetization mechanisms in CoCrPt thin films with perpendicular magnetic anisotropy: Fractal structure versus labyrinth stripe domains
The magnetization reversal of CoCrPt thin films has been examined as a function of thickness using magneto-optical Kerr effect (MOKE) microscopy and first-order reversal curves (FORC) techniques. MOKE images show differentiated magnetization reversal regimes for different film thicknesses: while the...
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
American Physical Society
2017
|
Online Access: | http://hdl.handle.net/1721.1/112616 https://orcid.org/0000-0003-2262-1249 |
_version_ | 1826193877616295936 |
---|---|
author | Navas, D. Soriano, N. Béron, F. Sousa, C. T. Pirota, K. R. Torrejon, J. Redondo, C. Morales, R. Ross, Caroline A |
author2 | Massachusetts Institute of Technology. Department of Materials Science and Engineering |
author_facet | Massachusetts Institute of Technology. Department of Materials Science and Engineering Navas, D. Soriano, N. Béron, F. Sousa, C. T. Pirota, K. R. Torrejon, J. Redondo, C. Morales, R. Ross, Caroline A |
author_sort | Navas, D. |
collection | MIT |
description | The magnetization reversal of CoCrPt thin films has been examined as a function of thickness using magneto-optical Kerr effect (MOKE) microscopy and first-order reversal curves (FORC) techniques. MOKE images show differentiated magnetization reversal regimes for different film thicknesses: while the magnetic domains in 10-nm-thick CoCrPt film resemble a fractal structure, a labyrinth stripe domain configuration is observed for 20-nm-thick films. Although FORC distributions for both cases show two main features related to irreversible processes (propagation and annihilation fields) separated by a mostly flat region, this method can nonetheless distinguish which magnetization reversal process is active according to the horizontal profile of the first FORC peak, or propagation field. A single-peak FORC profile corresponds to the fractal magnetization reversal, whereas a flat-peak FORC profile corresponds to the labyrinth magnetization reversal. |
first_indexed | 2024-09-23T09:46:44Z |
format | Article |
id | mit-1721.1/112616 |
institution | Massachusetts Institute of Technology |
language | English |
last_indexed | 2024-09-23T09:46:44Z |
publishDate | 2017 |
publisher | American Physical Society |
record_format | dspace |
spelling | mit-1721.1/1126162022-09-26T13:40:40Z Microscopic reversal magnetization mechanisms in CoCrPt thin films with perpendicular magnetic anisotropy: Fractal structure versus labyrinth stripe domains Navas, D. Soriano, N. Béron, F. Sousa, C. T. Pirota, K. R. Torrejon, J. Redondo, C. Morales, R. Ross, Caroline A Massachusetts Institute of Technology. Department of Materials Science and Engineering Ross, Caroline A The magnetization reversal of CoCrPt thin films has been examined as a function of thickness using magneto-optical Kerr effect (MOKE) microscopy and first-order reversal curves (FORC) techniques. MOKE images show differentiated magnetization reversal regimes for different film thicknesses: while the magnetic domains in 10-nm-thick CoCrPt film resemble a fractal structure, a labyrinth stripe domain configuration is observed for 20-nm-thick films. Although FORC distributions for both cases show two main features related to irreversible processes (propagation and annihilation fields) separated by a mostly flat region, this method can nonetheless distinguish which magnetization reversal process is active according to the horizontal profile of the first FORC peak, or propagation field. A single-peak FORC profile corresponds to the fractal magnetization reversal, whereas a flat-peak FORC profile corresponds to the labyrinth magnetization reversal. 2017-12-06T18:28:08Z 2017-12-06T18:28:08Z 2017-11 2017-09 2017-11-14T22:43:23Z Article http://purl.org/eprint/type/JournalArticle 2469-9950 2469-9969 http://hdl.handle.net/1721.1/112616 Navas, D. et al. "Microscopic reversal magnetization mechanisms in CoCrPt thin films with perpendicular magnetic anisotropy: Fractal structure versus labyrinth stripe domains." Physical Review B 96, 18 (November 2017): 180403(R) © 2017 American Physical Society https://orcid.org/0000-0003-2262-1249 en http://dx.doi.org/10.1103/PhysRevB.96.180403 Physical Review B Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. American Physical Society application/pdf American Physical Society American Physical Society |
spellingShingle | Navas, D. Soriano, N. Béron, F. Sousa, C. T. Pirota, K. R. Torrejon, J. Redondo, C. Morales, R. Ross, Caroline A Microscopic reversal magnetization mechanisms in CoCrPt thin films with perpendicular magnetic anisotropy: Fractal structure versus labyrinth stripe domains |
title | Microscopic reversal magnetization mechanisms in CoCrPt thin films with perpendicular magnetic anisotropy: Fractal structure versus labyrinth stripe domains |
title_full | Microscopic reversal magnetization mechanisms in CoCrPt thin films with perpendicular magnetic anisotropy: Fractal structure versus labyrinth stripe domains |
title_fullStr | Microscopic reversal magnetization mechanisms in CoCrPt thin films with perpendicular magnetic anisotropy: Fractal structure versus labyrinth stripe domains |
title_full_unstemmed | Microscopic reversal magnetization mechanisms in CoCrPt thin films with perpendicular magnetic anisotropy: Fractal structure versus labyrinth stripe domains |
title_short | Microscopic reversal magnetization mechanisms in CoCrPt thin films with perpendicular magnetic anisotropy: Fractal structure versus labyrinth stripe domains |
title_sort | microscopic reversal magnetization mechanisms in cocrpt thin films with perpendicular magnetic anisotropy fractal structure versus labyrinth stripe domains |
url | http://hdl.handle.net/1721.1/112616 https://orcid.org/0000-0003-2262-1249 |
work_keys_str_mv | AT navasd microscopicreversalmagnetizationmechanismsincocrptthinfilmswithperpendicularmagneticanisotropyfractalstructureversuslabyrinthstripedomains AT sorianon microscopicreversalmagnetizationmechanismsincocrptthinfilmswithperpendicularmagneticanisotropyfractalstructureversuslabyrinthstripedomains AT beronf microscopicreversalmagnetizationmechanismsincocrptthinfilmswithperpendicularmagneticanisotropyfractalstructureversuslabyrinthstripedomains AT sousact microscopicreversalmagnetizationmechanismsincocrptthinfilmswithperpendicularmagneticanisotropyfractalstructureversuslabyrinthstripedomains AT pirotakr microscopicreversalmagnetizationmechanismsincocrptthinfilmswithperpendicularmagneticanisotropyfractalstructureversuslabyrinthstripedomains AT torrejonj microscopicreversalmagnetizationmechanismsincocrptthinfilmswithperpendicularmagneticanisotropyfractalstructureversuslabyrinthstripedomains AT redondoc microscopicreversalmagnetizationmechanismsincocrptthinfilmswithperpendicularmagneticanisotropyfractalstructureversuslabyrinthstripedomains AT moralesr microscopicreversalmagnetizationmechanismsincocrptthinfilmswithperpendicularmagneticanisotropyfractalstructureversuslabyrinthstripedomains AT rosscarolinea microscopicreversalmagnetizationmechanismsincocrptthinfilmswithperpendicularmagneticanisotropyfractalstructureversuslabyrinthstripedomains |