In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy

Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this stu...

Full description

Bibliographic Details
Main Authors: Nelson, C. E., Hakim, C. H., Ousterout, D. G., Thakore, P. I., Moreb, E. A., Rivera, R. M. C., Madhavan, S., Pan, X., Ran, F. A., Yan, W. X., Asokan, A., Duan, D., Gersbach, C. A., Zhang, Feng
Other Authors: Massachusetts Institute of Technology. Department of Biological Engineering
Format: Article
Published: American Association for the Advancement of Science (AAAS) 2017
Online Access:http://hdl.handle.net/1721.1/112732
https://orcid.org/0000-0003-2782-2509
_version_ 1811096041355739136
author Nelson, C. E.
Hakim, C. H.
Ousterout, D. G.
Thakore, P. I.
Moreb, E. A.
Rivera, R. M. C.
Madhavan, S.
Pan, X.
Ran, F. A.
Yan, W. X.
Asokan, A.
Duan, D.
Gersbach, C. A.
Zhang, Feng
author2 Massachusetts Institute of Technology. Department of Biological Engineering
author_facet Massachusetts Institute of Technology. Department of Biological Engineering
Nelson, C. E.
Hakim, C. H.
Ousterout, D. G.
Thakore, P. I.
Moreb, E. A.
Rivera, R. M. C.
Madhavan, S.
Pan, X.
Ran, F. A.
Yan, W. X.
Asokan, A.
Duan, D.
Gersbach, C. A.
Zhang, Feng
author_sort Nelson, C. E.
collection MIT
description Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to the mdx mousemodel of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force.This work establishes CRISPR-Cas9-based genome editing as a potential therapy to treat DMD.
first_indexed 2024-09-23T16:37:24Z
format Article
id mit-1721.1/112732
institution Massachusetts Institute of Technology
last_indexed 2024-09-23T16:37:24Z
publishDate 2017
publisher American Association for the Advancement of Science (AAAS)
record_format dspace
spelling mit-1721.1/1127322022-09-29T20:25:29Z In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy Nelson, C. E. Hakim, C. H. Ousterout, D. G. Thakore, P. I. Moreb, E. A. Rivera, R. M. C. Madhavan, S. Pan, X. Ran, F. A. Yan, W. X. Asokan, A. Duan, D. Gersbach, C. A. Zhang, Feng Massachusetts Institute of Technology. Department of Biological Engineering Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences McGovern Institute for Brain Research at MIT Zhang, Feng Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to the mdx mousemodel of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force.This work establishes CRISPR-Cas9-based genome editing as a potential therapy to treat DMD. Muscular Dystrophy Association (Award MDA277360) National Institutes of Health (U.S.) (Grant 5DP1-MH100706) National Institutes of Health (U.S.) (Grant R01DK097768) 2017-12-13T16:02:35Z 2017-12-13T16:02:35Z 2016-01 2015-09 2017-12-12T19:20:21Z Article http://purl.org/eprint/type/JournalArticle 0036-8075 1095-9203 http://hdl.handle.net/1721.1/112732 Nelson, C. E. et al. “In Vivo Genome Editing Improves Muscle Function in a Mouse Model of Duchenne Muscular Dystrophy.” Science 351, 6271 (December 2015): 403–407 © 2016 American Association for the Advancement of Science https://orcid.org/0000-0003-2782-2509 http://dx.doi.org/10.1126/science.aad5143 Science Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf American Association for the Advancement of Science (AAAS) PMC
spellingShingle Nelson, C. E.
Hakim, C. H.
Ousterout, D. G.
Thakore, P. I.
Moreb, E. A.
Rivera, R. M. C.
Madhavan, S.
Pan, X.
Ran, F. A.
Yan, W. X.
Asokan, A.
Duan, D.
Gersbach, C. A.
Zhang, Feng
In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
title In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
title_full In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
title_fullStr In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
title_full_unstemmed In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
title_short In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
title_sort in vivo genome editing improves muscle function in a mouse model of duchenne muscular dystrophy
url http://hdl.handle.net/1721.1/112732
https://orcid.org/0000-0003-2782-2509
work_keys_str_mv AT nelsonce invivogenomeeditingimprovesmusclefunctioninamousemodelofduchennemusculardystrophy
AT hakimch invivogenomeeditingimprovesmusclefunctioninamousemodelofduchennemusculardystrophy
AT ousteroutdg invivogenomeeditingimprovesmusclefunctioninamousemodelofduchennemusculardystrophy
AT thakorepi invivogenomeeditingimprovesmusclefunctioninamousemodelofduchennemusculardystrophy
AT morebea invivogenomeeditingimprovesmusclefunctioninamousemodelofduchennemusculardystrophy
AT riverarmc invivogenomeeditingimprovesmusclefunctioninamousemodelofduchennemusculardystrophy
AT madhavans invivogenomeeditingimprovesmusclefunctioninamousemodelofduchennemusculardystrophy
AT panx invivogenomeeditingimprovesmusclefunctioninamousemodelofduchennemusculardystrophy
AT ranfa invivogenomeeditingimprovesmusclefunctioninamousemodelofduchennemusculardystrophy
AT yanwx invivogenomeeditingimprovesmusclefunctioninamousemodelofduchennemusculardystrophy
AT asokana invivogenomeeditingimprovesmusclefunctioninamousemodelofduchennemusculardystrophy
AT duand invivogenomeeditingimprovesmusclefunctioninamousemodelofduchennemusculardystrophy
AT gersbachca invivogenomeeditingimprovesmusclefunctioninamousemodelofduchennemusculardystrophy
AT zhangfeng invivogenomeeditingimprovesmusclefunctioninamousemodelofduchennemusculardystrophy