Gaussian Process Planning with Lipschitz Continuous Reward Functions
This paper presents a novel nonmyopic adaptive Gaussian process planning (GPP) framework endowed with a general class of Lipschitz continuous reward functions that can unify some active learning/sensing and Bayesian optimization criteria and offer practitioners some flexibility to specify their desi...
Κύριοι συγγραφείς: | , , |
---|---|
Άλλοι συγγραφείς: | |
Μορφή: | Άρθρο |
Γλώσσα: | en_US |
Έκδοση: |
Association for Computing Machinery
2017
|
Διαθέσιμο Online: | http://hdl.handle.net/1721.1/112929 https://orcid.org/0000-0002-8585-6566 |