Enabling forbidden dark matter
The thermal relic density of dark matter is conventionally set by two-body annihilations. We point out that in many simple models, 3→2 annihilations can play an important role in determining the relic density over a broad range of model parameters. This occurs when the two-body annihilation is kinem...
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
American Physical Society
2017
|
Online Access: | http://hdl.handle.net/1721.1/112975 https://orcid.org/0000-0003-2486-0681 https://orcid.org/0000-0001-9699-9047 https://orcid.org/0000-0002-6809-7545 |
Summary: | The thermal relic density of dark matter is conventionally set by two-body annihilations. We point out that in many simple models, 3→2 annihilations can play an important role in determining the relic density over a broad range of model parameters. This occurs when the two-body annihilation is kinematically forbidden, but the 3→2 process is allowed; we call this scenario not-forbidden dark matter. We illustrate this mechanism for a vector-portal dark matter model, showing that for a dark matter mass of m[subscript χ]∼MeV-10 GeV, 3→2 processes not only lead to the observed relic density, but also imply a self-interaction cross section that can solve the cusp/core problem. This can be accomplished while remaining consistent with stringent CMB constraints on light dark matter, and can potentially be discovered at future direct detection experiments. |
---|