Improving Product Quality with Entrapped Stable Emulsions: From Theory to Industrial Application

Entrapment of sub-micron scale emulsions containing active ingredients into macro-scale matrices has exhibited great potential as a delivery vehicle with controlled release capabilities, however optimization remains unrealized. Reported here are methods used to improve product quality by optimizing...

Full description

Bibliographic Details
Main Authors: Panagiotou, Thomai, Fisher, Robert J
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering
Format: Article
Published: MDPI AG 2018
Online Access:http://hdl.handle.net/1721.1/113377
https://orcid.org/0000-0002-5834-5189
Description
Summary:Entrapment of sub-micron scale emulsions containing active ingredients into macro-scale matrices has exhibited great potential as a delivery vehicle with controlled release capabilities, however optimization remains unrealized. Reported here are methods used to improve product quality by optimizing the emulsion formation steps. These methods are in conjunction with the precepts of Process Intensification (PI). Success with pharmaceutics and chemical reacting systems provides a strategy for a wide range of applications; the emphasis here being nutraceutics. Use of a nano-technology platform assists in: (a) product quality improvements through better nutrient dispersion, and thus bio-efficacy; and (b) production efficiencies through implementation of PI concepts. A continuous methodology, utilizing these PI concepts, that approximates a bottom-up approach to the creation of sub-micron and nano-emulsions is the basis of the technology presented here. Note that solid particles may result during post-processing. The metrics of successful processing include obtainment of nano-scale species with minimal input energy, reduced processing steps at higher throughput rates, and improved quality without over-usage of key ingredients. In addition to flavor and wellness characteristics, product stability for extended shelf life along with an appreciable cargo load in the entrapped emulsion is a major concern. Experimental protocols and path forward recommendations to overcome challenges and meet expectations in these emerging opportunities are also presented. Keywords: emulsion; nutraceuticals; bio-efficacy; nanoemulsion; emulsion stability