A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers

Background Human immunity relies on the coordinated responses of many cellular subsets and functional states. Inter-individual variations in cellular composition and communication could thus potentially alter host protection. Here, we explore this hypothesis by applying single-cell RNA-sequencing t...

Full description

Bibliographic Details
Main Authors: Martin-Gayo, Enrique, Ouyang, Zhengyu, Cronin, Jacqueline, Lichterfeld, Mathias, Yosef, Nir, Cole, Michael B., Walker, Bruce D., Yu, Xu G., Kolb, Kellie Elizabeth, Kazer, Samuel Weisgurt, Ordovas-Montanes, Jose Manuel, Shalek, Alexander K
Other Authors: Massachusetts Institute of Technology. Institute for Medical Engineering & Science
Format: Article
Language:English
Published: Biomed Central Ltd. 2018
Online Access:http://hdl.handle.net/1721.1/113611
https://orcid.org/0000-0003-0710-7305
https://orcid.org/0000-0002-7380-9594
_version_ 1811082747588902912
author Martin-Gayo, Enrique
Ouyang, Zhengyu
Cronin, Jacqueline
Lichterfeld, Mathias
Yosef, Nir
Cole, Michael B.
Walker, Bruce D.
Yu, Xu G.
Kolb, Kellie Elizabeth
Kazer, Samuel Weisgurt
Ordovas-Montanes, Jose Manuel
Shalek, Alexander K
author2 Massachusetts Institute of Technology. Institute for Medical Engineering & Science
author_facet Massachusetts Institute of Technology. Institute for Medical Engineering & Science
Martin-Gayo, Enrique
Ouyang, Zhengyu
Cronin, Jacqueline
Lichterfeld, Mathias
Yosef, Nir
Cole, Michael B.
Walker, Bruce D.
Yu, Xu G.
Kolb, Kellie Elizabeth
Kazer, Samuel Weisgurt
Ordovas-Montanes, Jose Manuel
Shalek, Alexander K
author_sort Martin-Gayo, Enrique
collection MIT
description Background Human immunity relies on the coordinated responses of many cellular subsets and functional states. Inter-individual variations in cellular composition and communication could thus potentially alter host protection. Here, we explore this hypothesis by applying single-cell RNA-sequencing to examine viral responses among the dendritic cells (DCs) of three elite controllers (ECs) of HIV-1 infection. Results To overcome the potentially confounding effects of donor-to-donor variability, we present a generally applicable computational framework for identifying reproducible patterns in gene expression across donors who share a unifying classification. Applying it, we discover a highly functional antiviral DC state in ECs whose fractional abundance after in vitro exposure to HIV-1 correlates with higher CD4+ T cell counts and lower HIV-1 viral loads, and that effectively primes polyfunctional T cell responses in vitro. By integrating information from existing genomic databases into our reproducibility-based analysis, we identify and validate select immunomodulators that increase the fractional abundance of this state in primary peripheral blood mononuclear cells from healthy individuals in vitro. Conclusions Overall, our results demonstrate how single-cell approaches can reveal previously unappreciated, yet important, immune behaviors and empower rational frameworks for modulating systems-level immune responses that may prove therapeutically and prophylactically useful.
first_indexed 2024-09-23T12:08:21Z
format Article
id mit-1721.1/113611
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T12:08:21Z
publishDate 2018
publisher Biomed Central Ltd.
record_format dspace
spelling mit-1721.1/1136112024-03-20T19:46:29Z A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers Martin-Gayo, Enrique Ouyang, Zhengyu Cronin, Jacqueline Lichterfeld, Mathias Yosef, Nir Cole, Michael B. Walker, Bruce D. Yu, Xu G. Kolb, Kellie Elizabeth Kazer, Samuel Weisgurt Ordovas-Montanes, Jose Manuel Shalek, Alexander K Massachusetts Institute of Technology. Institute for Medical Engineering & Science Massachusetts Institute of Technology. Department of Chemistry Kolb, Kellie Elizabeth Kazer, Samuel Weisgurt Ordovas-Montanes, Jose Manuel Shalek, Alexander K Background Human immunity relies on the coordinated responses of many cellular subsets and functional states. Inter-individual variations in cellular composition and communication could thus potentially alter host protection. Here, we explore this hypothesis by applying single-cell RNA-sequencing to examine viral responses among the dendritic cells (DCs) of three elite controllers (ECs) of HIV-1 infection. Results To overcome the potentially confounding effects of donor-to-donor variability, we present a generally applicable computational framework for identifying reproducible patterns in gene expression across donors who share a unifying classification. Applying it, we discover a highly functional antiviral DC state in ECs whose fractional abundance after in vitro exposure to HIV-1 correlates with higher CD4+ T cell counts and lower HIV-1 viral loads, and that effectively primes polyfunctional T cell responses in vitro. By integrating information from existing genomic databases into our reproducibility-based analysis, we identify and validate select immunomodulators that increase the fractional abundance of this state in primary peripheral blood mononuclear cells from healthy individuals in vitro. Conclusions Overall, our results demonstrate how single-cell approaches can reveal previously unappreciated, yet important, immune behaviors and empower rational frameworks for modulating systems-level immune responses that may prove therapeutically and prophylactically useful. 2018-02-12T21:46:22Z 2018-02-12T21:46:22Z 2018-01 2017-11 2018-02-04T04:19:12Z Article http://purl.org/eprint/type/JournalArticle 1474-760X http://hdl.handle.net/1721.1/113611 Martin-Gayo, Enrique, et al. “A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers.” Genome Biology, vol. 19, no. 1, Dec. 2018. https://orcid.org/0000-0003-0710-7305 https://orcid.org/0000-0002-7380-9594 en http://dx.doi.org/10.1186/s13059-017-1385-x Genome Biology Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/ The Author(s). application/pdf Biomed Central Ltd. BioMed Central
spellingShingle Martin-Gayo, Enrique
Ouyang, Zhengyu
Cronin, Jacqueline
Lichterfeld, Mathias
Yosef, Nir
Cole, Michael B.
Walker, Bruce D.
Yu, Xu G.
Kolb, Kellie Elizabeth
Kazer, Samuel Weisgurt
Ordovas-Montanes, Jose Manuel
Shalek, Alexander K
A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers
title A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers
title_full A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers
title_fullStr A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers
title_full_unstemmed A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers
title_short A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers
title_sort reproducibility based computational framework identifies an inducible enhanced antiviral state in dendritic cells from hiv 1 elite controllers
url http://hdl.handle.net/1721.1/113611
https://orcid.org/0000-0003-0710-7305
https://orcid.org/0000-0002-7380-9594
work_keys_str_mv AT martingayoenrique areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT ouyangzhengyu areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT croninjacqueline areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT lichterfeldmathias areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT yosefnir areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT colemichaelb areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT walkerbruced areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT yuxug areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT kolbkellieelizabeth areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT kazersamuelweisgurt areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT ordovasmontanesjosemanuel areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT shalekalexanderk areproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT martingayoenrique reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT ouyangzhengyu reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT croninjacqueline reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT lichterfeldmathias reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT yosefnir reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT colemichaelb reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT walkerbruced reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT yuxug reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT kolbkellieelizabeth reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT kazersamuelweisgurt reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT ordovasmontanesjosemanuel reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers
AT shalekalexanderk reproducibilitybasedcomputationalframeworkidentifiesaninducibleenhancedantiviralstateindendriticcellsfromhiv1elitecontrollers