In vitro blood cell viability profiling of polymers used in molecular assembly
Biocompatible polymers have been extensively applied to molecular assembly techniques on a micro- A nd nanoscale to miniaturize functional devices for biomedical uses. However, cytotoxic assessments of developed devices are prone to partially focus on non-specific cells or cells associated with the...
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Nature Publishing Group
2018
|
Online Access: | http://hdl.handle.net/1721.1/113620 |
_version_ | 1826193878060892160 |
---|---|
author | Jeong, Hyejoong Hwang, Jangsun Lee, Hwankyu Choi, Jonghoon Hong, Jinkee Hammond, Paula T |
author2 | Massachusetts Institute of Technology. Department of Chemical Engineering |
author_facet | Massachusetts Institute of Technology. Department of Chemical Engineering Jeong, Hyejoong Hwang, Jangsun Lee, Hwankyu Choi, Jonghoon Hong, Jinkee Hammond, Paula T |
author_sort | Jeong, Hyejoong |
collection | MIT |
description | Biocompatible polymers have been extensively applied to molecular assembly techniques on a micro- A nd nanoscale to miniaturize functional devices for biomedical uses. However, cytotoxic assessments of developed devices are prone to partially focus on non-specific cells or cells associated with the specific applications. Thereby, since toxicity is dependent on the type of cells and protocols, we do not fully understand the relative toxicities of polymers. Additionally, we need to ensure the blood cell biocompatibility of developed devices prior to that of targeted cells because most of the devices contact the blood before reaching the targeted regions. Motivated by this issue, we focused on screening cytotoxicity of polymers widely used for the layer-by-layer assembly technique using human blood cells. Cytotoxicity at the early stage was investigated on twenty types of polymers (positively charged, negatively charged, or neutral) and ten combination forms via hemolysis, cell viability, and AnnexinV-FITC/PI staining assays. We determined their effects on the cell membrane depending on their surface chemistry by molecular dynamics simulations. Furthermore, the toxicity of LbL-assembled nanofilms was assessed by measuring cell viability. Based on this report, researchers can produce nanofilms that are better suited for drug delivery and biomedical applications by reducing the possible cytotoxicity. |
first_indexed | 2024-09-23T09:46:44Z |
format | Article |
id | mit-1721.1/113620 |
institution | Massachusetts Institute of Technology |
last_indexed | 2024-09-23T09:46:44Z |
publishDate | 2018 |
publisher | Nature Publishing Group |
record_format | dspace |
spelling | mit-1721.1/1136202022-09-26T13:41:30Z In vitro blood cell viability profiling of polymers used in molecular assembly Jeong, Hyejoong Hwang, Jangsun Lee, Hwankyu Choi, Jonghoon Hong, Jinkee Hammond, Paula T Massachusetts Institute of Technology. Department of Chemical Engineering Koch Institute for Integrative Cancer Research at MIT Hammond, Paula T Biocompatible polymers have been extensively applied to molecular assembly techniques on a micro- A nd nanoscale to miniaturize functional devices for biomedical uses. However, cytotoxic assessments of developed devices are prone to partially focus on non-specific cells or cells associated with the specific applications. Thereby, since toxicity is dependent on the type of cells and protocols, we do not fully understand the relative toxicities of polymers. Additionally, we need to ensure the blood cell biocompatibility of developed devices prior to that of targeted cells because most of the devices contact the blood before reaching the targeted regions. Motivated by this issue, we focused on screening cytotoxicity of polymers widely used for the layer-by-layer assembly technique using human blood cells. Cytotoxicity at the early stage was investigated on twenty types of polymers (positively charged, negatively charged, or neutral) and ten combination forms via hemolysis, cell viability, and AnnexinV-FITC/PI staining assays. We determined their effects on the cell membrane depending on their surface chemistry by molecular dynamics simulations. Furthermore, the toxicity of LbL-assembled nanofilms was assessed by measuring cell viability. Based on this report, researchers can produce nanofilms that are better suited for drug delivery and biomedical applications by reducing the possible cytotoxicity. 2018-02-13T14:57:00Z 2018-02-13T14:57:00Z 2017-08 2016-12 2018-02-09T16:49:10Z Article http://purl.org/eprint/type/JournalArticle 2045-2322 http://hdl.handle.net/1721.1/113620 Jeong, Hyejoong et al. “In Vitro Blood Cell Viability Profiling of Polymers Used in Molecular Assembly.” Scientific Reports 7, 1 (August 2017): 9481 © 2017 The Author(s) http://dx.doi.org/10.1038/S41598-017-10169-5 Scientific Reports Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/ application/pdf Nature Publishing Group |
spellingShingle | Jeong, Hyejoong Hwang, Jangsun Lee, Hwankyu Choi, Jonghoon Hong, Jinkee Hammond, Paula T In vitro blood cell viability profiling of polymers used in molecular assembly |
title | In vitro blood cell viability profiling of polymers used in molecular assembly |
title_full | In vitro blood cell viability profiling of polymers used in molecular assembly |
title_fullStr | In vitro blood cell viability profiling of polymers used in molecular assembly |
title_full_unstemmed | In vitro blood cell viability profiling of polymers used in molecular assembly |
title_short | In vitro blood cell viability profiling of polymers used in molecular assembly |
title_sort | in vitro blood cell viability profiling of polymers used in molecular assembly |
url | http://hdl.handle.net/1721.1/113620 |
work_keys_str_mv | AT jeonghyejoong invitrobloodcellviabilityprofilingofpolymersusedinmolecularassembly AT hwangjangsun invitrobloodcellviabilityprofilingofpolymersusedinmolecularassembly AT leehwankyu invitrobloodcellviabilityprofilingofpolymersusedinmolecularassembly AT choijonghoon invitrobloodcellviabilityprofilingofpolymersusedinmolecularassembly AT hongjinkee invitrobloodcellviabilityprofilingofpolymersusedinmolecularassembly AT hammondpaulat invitrobloodcellviabilityprofilingofpolymersusedinmolecularassembly |