A 140 GHz gyro-amplifier using a confocal waveguide : theory and experimental results

Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.

Bibliographic Details
Main Author: Soane, Alexander (Alexander Visotsky)
Other Authors: Richard J. Temkin.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2018
Subjects:
Online Access:http://hdl.handle.net/1721.1/113937
_version_ 1811088956007120896
author Soane, Alexander (Alexander Visotsky)
author2 Richard J. Temkin.
author_facet Richard J. Temkin.
Soane, Alexander (Alexander Visotsky)
author_sort Soane, Alexander (Alexander Visotsky)
collection MIT
description Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.
first_indexed 2024-09-23T14:10:42Z
format Thesis
id mit-1721.1/113937
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T14:10:42Z
publishDate 2018
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/1139372019-04-12T08:05:38Z A 140 GHz gyro-amplifier using a confocal waveguide : theory and experimental results One hundred and forty gigahertz gyro-amplifier using a confocal waveguide : theory and experimental results Soane, Alexander (Alexander Visotsky) Richard J. Temkin. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. Electrical Engineering and Computer Science. Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from student-submitted PDF version of thesis. Includes bibliographical references (pages 139-147). This thesis reports on the theory, design, and experimental investigation of a gyrotron travelling-wave-tube (TWT) amplifier at 140 GHz. The gyro-TWT uses the HE06 mode of a confocal geometry as its operating mode. The linear and nonlinear theory of the confocal waveguide is presented, along with a quasi-optical approach for describing the modes of a confocal waveguide. Both the equations of motion and the mode excitation equation are derived in detail. A beamlet code is introduced as a tool for calculating the linear and nonlinear gain of the azimuthally asymmetric confocal modes that interact with the electron beam with an annular distribution of electron guiding centers. This code has been successfully benchmarked against the code MAGY for azimuthally symmetric cases, and extends the capabilities of nonlinear gyroamplifier theory to configurations that lack azimuthal symmetry. The gyro-TWT experimental setup is presented in detail. Quasi-optical mode converters were designed, fabricated, and tested, ultimately achieving a coupling of -3 dB into the HE06 mode. The source of competing, parasitic oscillations was identified and addressed by the addition of dielectric loading attached to the side of the open geometry of the confocal waveguide. The improvements to the gyro-TWT system allowed for zero-drive stable operation at currents up to 3 A. The design frequency of 140.0 GHz was successfully amplified with 35 dB circuit gain and a -3 dB bandwidth of 1.2 GHz from a 48 kV, 3 A electron beam with a beam pitch factor of 0.64 and a perpendicular velocity spread of 6%. The gyro-TWT produced 550 W at 140.0 GHz under the same operating conditions. During experimental testing, the pulse length used was 2 microseconds. The performance of the confocal gyro-TWT suggests that it may be a candidate for application to Dynamic Nuclear Polarization (DNP) Nuclear Magnetic Resonance (NMR) experiments. by Alexander Visotsky Soane. Ph. D. 2018-03-02T21:40:01Z 2018-03-02T21:40:01Z 2017 2017 Thesis http://hdl.handle.net/1721.1/113937 1023862203 eng MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582 147 pages application/pdf Massachusetts Institute of Technology
spellingShingle Electrical Engineering and Computer Science.
Soane, Alexander (Alexander Visotsky)
A 140 GHz gyro-amplifier using a confocal waveguide : theory and experimental results
title A 140 GHz gyro-amplifier using a confocal waveguide : theory and experimental results
title_full A 140 GHz gyro-amplifier using a confocal waveguide : theory and experimental results
title_fullStr A 140 GHz gyro-amplifier using a confocal waveguide : theory and experimental results
title_full_unstemmed A 140 GHz gyro-amplifier using a confocal waveguide : theory and experimental results
title_short A 140 GHz gyro-amplifier using a confocal waveguide : theory and experimental results
title_sort 140 ghz gyro amplifier using a confocal waveguide theory and experimental results
topic Electrical Engineering and Computer Science.
url http://hdl.handle.net/1721.1/113937
work_keys_str_mv AT soanealexanderalexandervisotsky a140ghzgyroamplifierusingaconfocalwaveguidetheoryandexperimentalresults
AT soanealexanderalexandervisotsky onehundredandfortygigahertzgyroamplifierusingaconfocalwaveguidetheoryandexperimentalresults
AT soanealexanderalexandervisotsky 140ghzgyroamplifierusingaconfocalwaveguidetheoryandexperimentalresults