Annealing behaviors of vacancy-type defects near interfaces between metal contacts and GaN probed using a monoenergetic positron beam
Vacancy-type defects near interfaces between metal contacts and GaN grown on Si substrates by metal organic chemical vapor deposition have been studied using a monoenergetic positron beam. Measurements of Doppler broadening spectra of the annihilation radiation for Ti-deposited GaN showed that optic...
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Institute of Physics (AIP)
2018
|
Online Access: | http://hdl.handle.net/1721.1/114247 https://orcid.org/0000-0002-8104-9097 |
Summary: | Vacancy-type defects near interfaces between metal contacts and GaN grown on Si substrates by metal organic chemical vapor deposition have been studied using a monoenergetic positron beam. Measurements of Doppler broadening spectra of the annihilation radiation for Ti-deposited GaN showed that optically active vacancy-type defects were introduced below the Ti/GaN interface after annealing at 800 °C. Charge transition of those defects due to electron capture was observed and was found to correlate with a yellow band in the photoluminescence spectrum. The major defect species was identified as vacancy clusters such as three to five Ga-vacancies coupled with multiple nitrogen-vacancies. The annealing behaviors of vacancy-type defects in Ti-, Ni-, and Pt-deposited GaN were also examined. |
---|