Space Propulsion Technology for Small Spacecraft

IEEE As small satellites become more popular and capable, strategies to provide in-space propulsion increase in importance. Applications range from orbital changes and maintenance, attitude control and desaturation of reaction wheels to drag compensation and de-orbit at spacecraft end-of-life. Space...

Full description

Bibliographic Details
Main Authors: Krejci, David, Lozano, Paulo C
Other Authors: Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Format: Article
Published: Institute of Electrical and Electronics Engineers (IEEE) 2018
Online Access:http://hdl.handle.net/1721.1/114401
https://orcid.org/0000-0003-4278-8951
https://orcid.org/0000-0002-6063-3227
Description
Summary:IEEE As small satellites become more popular and capable, strategies to provide in-space propulsion increase in importance. Applications range from orbital changes and maintenance, attitude control and desaturation of reaction wheels to drag compensation and de-orbit at spacecraft end-of-life. Space propulsion can be enabled by chemical or electric means, each having different performance and scalability properties. The purpose of this review is to describe the working principles of space propulsion technologies proposed so far for small spacecraft. Given the size, mass, power, and operational constraints of small satellites, not all types of propulsion can be used and very few have seen actual implementation in space. Emphasis is given in those strategies that have the potential of miniaturization to be used in all classes of vehicles, down to the popular 1-L, 1-kg CubeSats and smaller.