The Global Jet Structure of the Archetypical Quasar 3C 273
A key question in the formation of the relativistic jets in active galactic nuclei (AGNs) is the collimation process of their energetic plasma flow launched from the central supermassive black hole (SMBH). Recent observations of nearby low-luminosity radio galaxies exhibit a clear picture of parabol...
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
MDPI AG
2018
|
Online Access: | http://hdl.handle.net/1721.1/114447 https://orcid.org/0000-0002-9475-4254 |
Summary: | A key question in the formation of the relativistic jets in active galactic nuclei (AGNs) is the collimation process of their energetic plasma flow launched from the central supermassive black hole (SMBH). Recent observations of nearby low-luminosity radio galaxies exhibit a clear picture of parabolic collimation inside the Bondi accretion radius. On the other hand, little is known of the observational properties of jet collimation in more luminous quasars, where the accretion flow may be significantly different due to much higher accretion rates. In this paper, we present preliminary results of multi-frequency observations of the archetypal quasar 3C 273 with the Very Long Baseline Array (VLBA) at 1.4, 15, and 43 GHz, and Multi-Element Radio Linked Interferometer Network (MERLIN) at 1.6 GHz. The observations provide a detailed view of the transverse structure resolved on a broad range of spatial scales from sub-parsec to kilo parsecs, allowing us to profile the jet width as a function of the distance from the core for the first time in jets of bright quasars. We discovered a transition from a parabolic stream to a conical stream, which has been seen in much lower-luminosity radio galaxies. The similarity in the profile to the much lower-powered radio galaxy M87 suggests the universality of jet collimation among AGNs with different accretion rates. Keywords: galaxies: active; galaxies: individual (3C 273); galaxies: jets; radio continuum: galaxies; techniques: high angular resolution; techniques: interferometric |
---|