Clausius–Clapeyron Scaling of Peak CAPE in Continental Convective Storm Environments

A thermodynamic constraint on convective available potential energy (CAPE) in continental environments is established using an idealized one-dimensional model. This theoretical model simplifies the synoptic-scale preconditioning framework for continental severe convection by considering a dry adiaba...

Full description

Bibliographic Details
Main Authors: Agard, Vince, Emanuel, Kerry Andrew
Other Authors: Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Format: Article
Published: American Meteorological Society 2018
Online Access:http://hdl.handle.net/1721.1/114581
https://orcid.org/0000-0002-2066-2082
Description
Summary:A thermodynamic constraint on convective available potential energy (CAPE) in continental environments is established using an idealized one-dimensional model. This theoretical model simplifies the synoptic-scale preconditioning framework for continental severe convection by considering a dry adiabatic column that comes into contact with a moist land surface. A system of equations is derived to describe the evolution of the ensuing surface boundary layer. From these, the maximum value of transient CAPE in the column can be found for any particular combination of surface temperature and moisture. It is demonstrated that, for a given range of surface temperatures, the value of peak CAPE scales with the Clausius–Clapeyron relation. Keywords: Atmosphere; Convection; Severe storms; CAPE; Climate change; Thermodynamics