Field control of anisotropic spin transport and spin helix dynamics in a modulation-doped GaAs quantum well

Electron spin transport and dynamics are investigated in a single, high-mobility, modulation-doped, GaAs quantum well using ultrafast two-color Kerr-rotation microspectroscopy, supported by qualitative kinetic theory simulations of spin diffusion and transport. Evolution of the spins is governed by...

Full description

Bibliographic Details
Main Authors: Anghel, S., Passmann, F., Ruppert, C., Poshakinskiy, A. V., Tarasenko, S. A., Moore, J. N., Yusa, G., Mano, T., Noda, T., Li, X., Bristow, A. D., Betz, M., Singh, Akshay k
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering
Format: Article
Language:English
Published: American Physical Society 2018
Online Access:http://hdl.handle.net/1721.1/114762
https://orcid.org/0000-0003-1059-065X
_version_ 1826205902146895872
author Anghel, S.
Passmann, F.
Ruppert, C.
Poshakinskiy, A. V.
Tarasenko, S. A.
Moore, J. N.
Yusa, G.
Mano, T.
Noda, T.
Li, X.
Bristow, A. D.
Betz, M.
Singh, Akshay k
author2 Massachusetts Institute of Technology. Department of Materials Science and Engineering
author_facet Massachusetts Institute of Technology. Department of Materials Science and Engineering
Anghel, S.
Passmann, F.
Ruppert, C.
Poshakinskiy, A. V.
Tarasenko, S. A.
Moore, J. N.
Yusa, G.
Mano, T.
Noda, T.
Li, X.
Bristow, A. D.
Betz, M.
Singh, Akshay k
author_sort Anghel, S.
collection MIT
description Electron spin transport and dynamics are investigated in a single, high-mobility, modulation-doped, GaAs quantum well using ultrafast two-color Kerr-rotation microspectroscopy, supported by qualitative kinetic theory simulations of spin diffusion and transport. Evolution of the spins is governed by the Dresselhaus bulk and Rashba structural inversion asymmetries, which manifest as an effective magnetic field that can be extracted directly from the experimental coherent spin precession. A spin-precession length λ[subscript SOI] is defined as one complete precession in the effective magnetic field. It is observed that application of (i) an out-of-plane electric field changes the spin decay time and λ[subscript SOI] through the Rashba component of the spin-orbit coupling, (ii) an in-plane magnetic field allows for extraction of the Dresselhaus and Rashba parameters, and (iii) an in-plane electric field markedly modifies both the λ[subscript SOI] and diffusion coefficient.
first_indexed 2024-09-23T13:20:51Z
format Article
id mit-1721.1/114762
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T13:20:51Z
publishDate 2018
publisher American Physical Society
record_format dspace
spelling mit-1721.1/1147622022-09-28T13:33:59Z Field control of anisotropic spin transport and spin helix dynamics in a modulation-doped GaAs quantum well Anghel, S. Passmann, F. Ruppert, C. Poshakinskiy, A. V. Tarasenko, S. A. Moore, J. N. Yusa, G. Mano, T. Noda, T. Li, X. Bristow, A. D. Betz, M. Singh, Akshay k Massachusetts Institute of Technology. Department of Materials Science and Engineering Singh, Akshay k Electron spin transport and dynamics are investigated in a single, high-mobility, modulation-doped, GaAs quantum well using ultrafast two-color Kerr-rotation microspectroscopy, supported by qualitative kinetic theory simulations of spin diffusion and transport. Evolution of the spins is governed by the Dresselhaus bulk and Rashba structural inversion asymmetries, which manifest as an effective magnetic field that can be extracted directly from the experimental coherent spin precession. A spin-precession length λ[subscript SOI] is defined as one complete precession in the effective magnetic field. It is observed that application of (i) an out-of-plane electric field changes the spin decay time and λ[subscript SOI] through the Rashba component of the spin-orbit coupling, (ii) an in-plane magnetic field allows for extraction of the Dresselhaus and Rashba parameters, and (iii) an in-plane electric field markedly modifies both the λ[subscript SOI] and diffusion coefficient. 2018-04-17T17:57:19Z 2018-04-17T17:57:19Z 2018-03 2017-11 2018-03-15T18:00:59Z Article http://purl.org/eprint/type/JournalArticle 2469-9950 2469-9969 http://hdl.handle.net/1721.1/114762 Anghel, S. et al. "Field control of anisotropic spin transport and spin helix dynamics in a modulation-doped GaAs quantum well." Physical Review B 97, 12 (March 2018): 125410 © 2018 American Physical Society https://orcid.org/0000-0003-1059-065X en http://dx.doi.org/10.1103/PhysRevB.97.125410 Physical Review B Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. American Physical Society application/pdf American Physical Society American Physical Society
spellingShingle Anghel, S.
Passmann, F.
Ruppert, C.
Poshakinskiy, A. V.
Tarasenko, S. A.
Moore, J. N.
Yusa, G.
Mano, T.
Noda, T.
Li, X.
Bristow, A. D.
Betz, M.
Singh, Akshay k
Field control of anisotropic spin transport and spin helix dynamics in a modulation-doped GaAs quantum well
title Field control of anisotropic spin transport and spin helix dynamics in a modulation-doped GaAs quantum well
title_full Field control of anisotropic spin transport and spin helix dynamics in a modulation-doped GaAs quantum well
title_fullStr Field control of anisotropic spin transport and spin helix dynamics in a modulation-doped GaAs quantum well
title_full_unstemmed Field control of anisotropic spin transport and spin helix dynamics in a modulation-doped GaAs quantum well
title_short Field control of anisotropic spin transport and spin helix dynamics in a modulation-doped GaAs quantum well
title_sort field control of anisotropic spin transport and spin helix dynamics in a modulation doped gaas quantum well
url http://hdl.handle.net/1721.1/114762
https://orcid.org/0000-0003-1059-065X
work_keys_str_mv AT anghels fieldcontrolofanisotropicspintransportandspinhelixdynamicsinamodulationdopedgaasquantumwell
AT passmannf fieldcontrolofanisotropicspintransportandspinhelixdynamicsinamodulationdopedgaasquantumwell
AT ruppertc fieldcontrolofanisotropicspintransportandspinhelixdynamicsinamodulationdopedgaasquantumwell
AT poshakinskiyav fieldcontrolofanisotropicspintransportandspinhelixdynamicsinamodulationdopedgaasquantumwell
AT tarasenkosa fieldcontrolofanisotropicspintransportandspinhelixdynamicsinamodulationdopedgaasquantumwell
AT moorejn fieldcontrolofanisotropicspintransportandspinhelixdynamicsinamodulationdopedgaasquantumwell
AT yusag fieldcontrolofanisotropicspintransportandspinhelixdynamicsinamodulationdopedgaasquantumwell
AT manot fieldcontrolofanisotropicspintransportandspinhelixdynamicsinamodulationdopedgaasquantumwell
AT nodat fieldcontrolofanisotropicspintransportandspinhelixdynamicsinamodulationdopedgaasquantumwell
AT lix fieldcontrolofanisotropicspintransportandspinhelixdynamicsinamodulationdopedgaasquantumwell
AT bristowad fieldcontrolofanisotropicspintransportandspinhelixdynamicsinamodulationdopedgaasquantumwell
AT betzm fieldcontrolofanisotropicspintransportandspinhelixdynamicsinamodulationdopedgaasquantumwell
AT singhakshayk fieldcontrolofanisotropicspintransportandspinhelixdynamicsinamodulationdopedgaasquantumwell