_version_ 1826200974314700800
author Zhang, Weixia
Abbaspourrad, Alireza
Tao, Jun
Hang, Tian
Weitz, David A.
Xie, Xi
Ahn, Jiyoung
Bader, Andrew
Bose, Suman
Vegas, Arturo
Lin, Jiaqi
Iverson, Nicole M.
Bisker Raviv, Gili Hana
Li, Linxian
Strano, Michael S.
Anderson, Daniel Griffith
Lee, Hyomin, Ph. D. Massachusetts Institute of Technology
author2 Massachusetts Institute of Technology. Institute for Medical Engineering & Science
author_facet Massachusetts Institute of Technology. Institute for Medical Engineering & Science
Zhang, Weixia
Abbaspourrad, Alireza
Tao, Jun
Hang, Tian
Weitz, David A.
Xie, Xi
Ahn, Jiyoung
Bader, Andrew
Bose, Suman
Vegas, Arturo
Lin, Jiaqi
Iverson, Nicole M.
Bisker Raviv, Gili Hana
Li, Linxian
Strano, Michael S.
Anderson, Daniel Griffith
Lee, Hyomin, Ph. D. Massachusetts Institute of Technology
author_sort Zhang, Weixia
collection MIT
description Implantable sensors that detect biomarkers in vivo are critical for early disease diagnostics. Although many colloidal nanomaterials have been developed into optical sensors to detect biomolecules in vitro, their application in vivo as implantable sensors is hindered by potential migration or clearance from the implantation site. One potential solution is incorporating colloidal nanosensors in hydrogel scaffold prior to implantation. However, direct contact between the nanosensors and hydrogel matrix has the potential to disrupt sensor performance. Here, we develop a hollow-microcapsule-based sensing platform that protects colloidal nanosensors from direct contact with hydrogel matrix. Using microfluidics, colloidal nanosensors were encapsulated in polyethylene glycol microcapsules with liquid cores. The microcapsules selectively trap the nanosensors within the core while allowing free diffusion of smaller molecules such as glucose and heparin. Glucose-responsive quantum dots or gold nanorods or heparin-responsive gold nanorods were each encapsulated. Microcapsules loaded with these sensors showed responsive optical signals in the presence of target biomolecules (glucose or heparin). Furthermore, these microcapsules can be immobilized into biocompatible hydrogel as implantable devices for biomolecular sensing. This technique offers new opportunities to extend the utility of colloidal nanosensors from solution-based detection to implantable device-based detection. Keywords: biomolecular sensing; Microcapsules; microfluidic fabrication; nanosensors
first_indexed 2024-09-23T11:44:38Z
format Article
id mit-1721.1/114824
institution Massachusetts Institute of Technology
last_indexed 2024-09-23T11:44:38Z
publishDate 2018
publisher American Chemical Society (ACS)
record_format dspace
spelling mit-1721.1/1148242022-09-27T21:36:31Z Microfluidic Fabrication of Colloidal Nanomaterials-Encapsulated Microcapsules for Biomolecular Sensing Zhang, Weixia Abbaspourrad, Alireza Tao, Jun Hang, Tian Weitz, David A. Xie, Xi Ahn, Jiyoung Bader, Andrew Bose, Suman Vegas, Arturo Lin, Jiaqi Iverson, Nicole M. Bisker Raviv, Gili Hana Li, Linxian Strano, Michael S. Anderson, Daniel Griffith Lee, Hyomin, Ph. D. Massachusetts Institute of Technology Massachusetts Institute of Technology. Institute for Medical Engineering & Science Harvard University--MIT Division of Health Sciences and Technology Massachusetts Institute of Technology. Department of Chemical Engineering Massachusetts Institute of Technology. Department of Physics Koch Institute for Integrative Cancer Research at MIT Xie, Xi Ahn, Jiyoung Bader, Andrew Bose, Suman Vegas, Arturo Lin, Jiaqi Iverson, Nicole M. Bisker Raviv, Gili Hana Li, Linxian Strano, Michael S. Anderson, Daniel Griffith Implantable sensors that detect biomarkers in vivo are critical for early disease diagnostics. Although many colloidal nanomaterials have been developed into optical sensors to detect biomolecules in vitro, their application in vivo as implantable sensors is hindered by potential migration or clearance from the implantation site. One potential solution is incorporating colloidal nanosensors in hydrogel scaffold prior to implantation. However, direct contact between the nanosensors and hydrogel matrix has the potential to disrupt sensor performance. Here, we develop a hollow-microcapsule-based sensing platform that protects colloidal nanosensors from direct contact with hydrogel matrix. Using microfluidics, colloidal nanosensors were encapsulated in polyethylene glycol microcapsules with liquid cores. The microcapsules selectively trap the nanosensors within the core while allowing free diffusion of smaller molecules such as glucose and heparin. Glucose-responsive quantum dots or gold nanorods or heparin-responsive gold nanorods were each encapsulated. Microcapsules loaded with these sensors showed responsive optical signals in the presence of target biomolecules (glucose or heparin). Furthermore, these microcapsules can be immobilized into biocompatible hydrogel as implantable devices for biomolecular sensing. This technique offers new opportunities to extend the utility of colloidal nanosensors from solution-based detection to implantable device-based detection. Keywords: biomolecular sensing; Microcapsules; microfluidic fabrication; nanosensors Juvenile Diabetes Research Foundation International (Award 17-2013-507) 2018-04-20T19:04:59Z 2018-04-20T19:04:59Z 2017-02 2017-01 2018-04-19T14:27:28Z Article http://purl.org/eprint/type/JournalArticle 1530-6984 1530-6992 http://hdl.handle.net/1721.1/114824 Xie, Xi et al. “Microfluidic Fabrication of Colloidal Nanomaterials-Encapsulated Microcapsules for Biomolecular Sensing.” Nano Letters 17, 3 (February 2017): 2015–2020 © 2017 American Chemical Society https://orcid.org/0000-0002-5108-8212 https://orcid.org/0000-0002-0739-8352 https://orcid.org/0000-0001-8223-035X https://orcid.org/0000-0002-5921-3436 https://orcid.org/0000-0001-9522-8208 https://orcid.org/0000-0001-7779-0424 https://orcid.org/0000-0002-5166-1410 https://orcid.org/0000-0003-2592-7956 https://orcid.org/0000-0002-7635-5102 https://orcid.org/0000-0003-2944-808X https://orcid.org/0000-0001-5629-4798 http://dx.doi.org/10.1021/ACS.NANOLETT.7B00026 Nano Letters Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf American Chemical Society (ACS) Other repository
spellingShingle Zhang, Weixia
Abbaspourrad, Alireza
Tao, Jun
Hang, Tian
Weitz, David A.
Xie, Xi
Ahn, Jiyoung
Bader, Andrew
Bose, Suman
Vegas, Arturo
Lin, Jiaqi
Iverson, Nicole M.
Bisker Raviv, Gili Hana
Li, Linxian
Strano, Michael S.
Anderson, Daniel Griffith
Lee, Hyomin, Ph. D. Massachusetts Institute of Technology
Microfluidic Fabrication of Colloidal Nanomaterials-Encapsulated Microcapsules for Biomolecular Sensing
title Microfluidic Fabrication of Colloidal Nanomaterials-Encapsulated Microcapsules for Biomolecular Sensing
title_full Microfluidic Fabrication of Colloidal Nanomaterials-Encapsulated Microcapsules for Biomolecular Sensing
title_fullStr Microfluidic Fabrication of Colloidal Nanomaterials-Encapsulated Microcapsules for Biomolecular Sensing
title_full_unstemmed Microfluidic Fabrication of Colloidal Nanomaterials-Encapsulated Microcapsules for Biomolecular Sensing
title_short Microfluidic Fabrication of Colloidal Nanomaterials-Encapsulated Microcapsules for Biomolecular Sensing
title_sort microfluidic fabrication of colloidal nanomaterials encapsulated microcapsules for biomolecular sensing
url http://hdl.handle.net/1721.1/114824
https://orcid.org/0000-0002-5108-8212
https://orcid.org/0000-0002-0739-8352
https://orcid.org/0000-0001-8223-035X
https://orcid.org/0000-0002-5921-3436
https://orcid.org/0000-0001-9522-8208
https://orcid.org/0000-0001-7779-0424
https://orcid.org/0000-0002-5166-1410
https://orcid.org/0000-0003-2592-7956
https://orcid.org/0000-0002-7635-5102
https://orcid.org/0000-0003-2944-808X
https://orcid.org/0000-0001-5629-4798
work_keys_str_mv AT zhangweixia microfluidicfabricationofcolloidalnanomaterialsencapsulatedmicrocapsulesforbiomolecularsensing
AT abbaspourradalireza microfluidicfabricationofcolloidalnanomaterialsencapsulatedmicrocapsulesforbiomolecularsensing
AT taojun microfluidicfabricationofcolloidalnanomaterialsencapsulatedmicrocapsulesforbiomolecularsensing
AT hangtian microfluidicfabricationofcolloidalnanomaterialsencapsulatedmicrocapsulesforbiomolecularsensing
AT weitzdavida microfluidicfabricationofcolloidalnanomaterialsencapsulatedmicrocapsulesforbiomolecularsensing
AT xiexi microfluidicfabricationofcolloidalnanomaterialsencapsulatedmicrocapsulesforbiomolecularsensing
AT ahnjiyoung microfluidicfabricationofcolloidalnanomaterialsencapsulatedmicrocapsulesforbiomolecularsensing
AT baderandrew microfluidicfabricationofcolloidalnanomaterialsencapsulatedmicrocapsulesforbiomolecularsensing
AT bosesuman microfluidicfabricationofcolloidalnanomaterialsencapsulatedmicrocapsulesforbiomolecularsensing
AT vegasarturo microfluidicfabricationofcolloidalnanomaterialsencapsulatedmicrocapsulesforbiomolecularsensing
AT linjiaqi microfluidicfabricationofcolloidalnanomaterialsencapsulatedmicrocapsulesforbiomolecularsensing
AT iversonnicolem microfluidicfabricationofcolloidalnanomaterialsencapsulatedmicrocapsulesforbiomolecularsensing
AT biskerravivgilihana microfluidicfabricationofcolloidalnanomaterialsencapsulatedmicrocapsulesforbiomolecularsensing
AT lilinxian microfluidicfabricationofcolloidalnanomaterialsencapsulatedmicrocapsulesforbiomolecularsensing
AT stranomichaels microfluidicfabricationofcolloidalnanomaterialsencapsulatedmicrocapsulesforbiomolecularsensing
AT andersondanielgriffith microfluidicfabricationofcolloidalnanomaterialsencapsulatedmicrocapsulesforbiomolecularsensing
AT leehyominphdmassachusettsinstituteoftechnology microfluidicfabricationofcolloidalnanomaterialsencapsulatedmicrocapsulesforbiomolecularsensing