Recent Advances in Scaling Up Gaussian Process Predictive Models for Large Spatiotemporal Data

The expressive power of Gaussian process (GP) models comes at a cost of poor scalability in the size of the data. To improve their scalability, this paper presents an overview of our recent progress in scaling up GP models for large spatiotemporally correlated data through parallelization on cluster...

Full description

Bibliographic Details
Main Authors: Low, Kian Hsiang, Chen, Jie, Hoang, Trong Nghia, Xu, Nuo, Jaillet, Patrick
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Language:en_US
Published: Springer-Verlag 2018
Online Access:http://hdl.handle.net/1721.1/115059
https://orcid.org/0000-0002-8585-6566
_version_ 1826208349367042048
author Low, Kian Hsiang
Chen, Jie
Hoang, Trong Nghia
Xu, Nuo
Jaillet, Patrick
author2 Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
author_facet Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Low, Kian Hsiang
Chen, Jie
Hoang, Trong Nghia
Xu, Nuo
Jaillet, Patrick
author_sort Low, Kian Hsiang
collection MIT
description The expressive power of Gaussian process (GP) models comes at a cost of poor scalability in the size of the data. To improve their scalability, this paper presents an overview of our recent progress in scaling up GP models for large spatiotemporally correlated data through parallelization on clusters of machines, online learning, and nonmyopic active sensing/learning.
first_indexed 2024-09-23T14:04:02Z
format Article
id mit-1721.1/115059
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T14:04:02Z
publishDate 2018
publisher Springer-Verlag
record_format dspace
spelling mit-1721.1/1150592022-09-28T18:10:25Z Recent Advances in Scaling Up Gaussian Process Predictive Models for Large Spatiotemporal Data Low, Kian Hsiang Chen, Jie Hoang, Trong Nghia Xu, Nuo Jaillet, Patrick Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science Jaillet, Patrick The expressive power of Gaussian process (GP) models comes at a cost of poor scalability in the size of the data. To improve their scalability, this paper presents an overview of our recent progress in scaling up GP models for large spatiotemporally correlated data through parallelization on clusters of machines, online learning, and nonmyopic active sensing/learning. Singapore-MIT Alliance (Subaward Agreement No. 41) Singapore-MIT Alliance (Subaward Agreement No. 52) 2018-04-27T19:12:47Z 2018-04-27T19:12:47Z 2015-11 Article http://purl.org/eprint/type/ConferencePaper 978-3-319-25137-0 978-3-319-25138-7 0302-9743 1611-3349 http://hdl.handle.net/1721.1/115059 Low, Kian Hsiang, Jie Chen, Trong Nghia Hoang, Nuo Xu, and Patrick Jaillet. “Recent Advances in Scaling Up Gaussian Process Predictive Models for Large Spatiotemporal Data.” Lecture Notes in Computer Science (2015): 167–181. https://orcid.org/0000-0002-8585-6566 en_US http://dx.doi.org/10.1007/978-3-319-25138-7_16 Dynamic Data-Driven Environmental Systems Science Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Springer-Verlag Other univ. web domain
spellingShingle Low, Kian Hsiang
Chen, Jie
Hoang, Trong Nghia
Xu, Nuo
Jaillet, Patrick
Recent Advances in Scaling Up Gaussian Process Predictive Models for Large Spatiotemporal Data
title Recent Advances in Scaling Up Gaussian Process Predictive Models for Large Spatiotemporal Data
title_full Recent Advances in Scaling Up Gaussian Process Predictive Models for Large Spatiotemporal Data
title_fullStr Recent Advances in Scaling Up Gaussian Process Predictive Models for Large Spatiotemporal Data
title_full_unstemmed Recent Advances in Scaling Up Gaussian Process Predictive Models for Large Spatiotemporal Data
title_short Recent Advances in Scaling Up Gaussian Process Predictive Models for Large Spatiotemporal Data
title_sort recent advances in scaling up gaussian process predictive models for large spatiotemporal data
url http://hdl.handle.net/1721.1/115059
https://orcid.org/0000-0002-8585-6566
work_keys_str_mv AT lowkianhsiang recentadvancesinscalingupgaussianprocesspredictivemodelsforlargespatiotemporaldata
AT chenjie recentadvancesinscalingupgaussianprocesspredictivemodelsforlargespatiotemporaldata
AT hoangtrongnghia recentadvancesinscalingupgaussianprocesspredictivemodelsforlargespatiotemporaldata
AT xunuo recentadvancesinscalingupgaussianprocesspredictivemodelsforlargespatiotemporaldata
AT jailletpatrick recentadvancesinscalingupgaussianprocesspredictivemodelsforlargespatiotemporaldata