Mechanism of Single-Site Molecule-Like Catalytic Ethylene Dimerization in Ni-MFU-4

A recently developed metal–organic framework (MOF) catalyst for the dimerization of ethylene has a combination of selectivity and activity that surpasses that of commercial homogeneous catalysts, which have dominated this important industrial process for nearly 50 years. The uniform catalytic sites...

Full description

Bibliographic Details
Main Authors: Metzger, Eric Daniel, Comito, Robert J, Hendon, Christopher H, Dinca, Mircea
Other Authors: Massachusetts Institute of Technology. Department of Chemistry
Format: Article
Language:en_US
Published: American Chemical Society (ACS) 2018
Online Access:http://hdl.handle.net/1721.1/115117
https://orcid.org/0000-0001-6597-1981
https://orcid.org/0000-0003-1298-2876
https://orcid.org/0000-0002-1262-1264
Description
Summary:A recently developed metal–organic framework (MOF) catalyst for the dimerization of ethylene has a combination of selectivity and activity that surpasses that of commercial homogeneous catalysts, which have dominated this important industrial process for nearly 50 years. The uniform catalytic sites available in MOFs provide a unique opportunity to directly study reaction mechanisms in heterogeneous catalysts, a problem typically intractable due to the multiplicity of coordination environments found in many solid catalysts. In this work, we use a combination of isotopic labeling studies, mechanistic probes, and DFT calculations to demonstrate that Ni-MFU-4l operates via the Cossee-Arlman mechanism, which has also been implicated in homogeneous late transition metal catalysts. These studies demonstrate that metal nodes in MOFs mimic homogeneous catalysts not just functionally, but also mechanistically. They provide a blueprint for the development of advanced heterogeneous catalysts with similar degrees of tunability to their homogeneous counterparts.