Scaling law for recovering the sparsest element in a subspace
We address the problem of recovering a sparse n-vector within a given subspace. This problem is a subtask of some approaches to dictionary learning and sparse principal component analysis. Hence, if we can prove scaling laws for recovery of sparse vectors, it will be easier to derive and prove recov...
Principais autores: | Demanet, Laurent, Hand, Paul |
---|---|
Outros Autores: | Massachusetts Institute of Technology. Department of Mathematics |
Formato: | Artigo |
Publicado em: |
Oxford University Press (OUP)
2018
|
Acesso em linha: | http://hdl.handle.net/1721.1/115483 https://orcid.org/0000-0001-7052-5097 |
Registros relacionados
-
Survival of the sparsest: robust gene networks are parsimonious
por: Robert D Leclerc
Publicado em: (2008-08-01) -
Learning directed acyclic graph models based on sparsest permutations
por: Raskutti, Garvesh, et al.
Publicado em: (2021) -
Roller Bearing Fault Diagnosis Based on Adaptive Sparsest Narrow-Band Decomposition and MMC-FCH
por: Yanfeng Peng, et al.
Publicado em: (2019-01-01) -
Stable Optimizationless Recovery from Phaseless Linear Measurements
por: Demanet, Laurent, et al.
Publicado em: (2015) -
Convergence of restarted Krylov subspaces to invariant subspaces
por: Beattie, C, et al.
Publicado em: (2001)